
 1

Manual, ver. 03/01/2008,

for “Lever_1.1”, and the associated programs
“PhylCRM_preprocess_1.1” and “Lever_statistics_1.1”

utilized in the paper:

Jason B. Warner1,6, Anthony A. Philippakis1,3,4,6, Savina A. Jaeger1,6, Fangxue Sherry

He1,7, Jolinta Lin1,5, and Martha L. Bulyk1,2,3,4.

Systematic identification of mammalian regulatory motifs'

target genes and functions.

Nature Methods (2008). Advance Online Publication, 2 Mar 2008,

(10.1038/nmeth.1188).

1Division of Genetics, Department of Medicine; 2Department of Pathology;

3Harvard/MIT Division of Health Sciences and Technology (HST); Brigham and

Women’s Hospital and Harvard Medical School, Boston, MA 02115.

4Harvard University Graduate Biophysics Program, Harvard Medical School, Boston,

MA 02115.

5Department of Biology, MIT, Cambridge, MA 02139.

6These authors contributed equally to this work.

7Current address: The Institute for Genomic Research, Rockville, MD 20850.

Please address any questions, comments, complaints, or other feedback to
sjaeger@rics.bwh.harvard.edu and mlbulyk@receptor.med.harvard.edu.

 2

I. Introduction
The suite of computational tools described in this manual provides an in silico framework
for mapping transcription factor binding site (TFBS) motifs to their likely target genes.
There are three programs in this suite:

1) PhylCRM_preprocess: Both PhylCRM and Lever require a collection of input files
that parameterize various statistical properties of the utilized motifs. This program
generates these parameterization files. Also, it has the ability to generate length-
matched sequence sets for each of the foreground gene sets under consideration.
These matched background gene sets can be used in Lever screens (see below).

2) Lever: This program takes as input a collection of TFBS motifs, a collection of
sequences and a set system (i.e., a collection of subsets) for these sequences. For
each subset of sequences and each motif or combination of motifs, the program
evaluates whether or not the sequences in the subset (i.e., a “foreground” set of
sequences) show more enrichment for the motifs under consideration than a matched
“background” set of sequences. Here, enrichment is determined by comparing the
PhylCRM scores of the foreground regions against the PhylCRM scores of the
background regions; thus, Lever extends the capabilities of PhylCRM by screening
pairings of sequence sets and motifs.

3) Lever_statistics: This program takes as input two matrices, where the first matrix
indicates the membership of each sequence in the various foreground/background sets
and the second matrix indicates the scores of the sequences for each of the
motifs/motif combinations under consideration. It then uses these matrices to
calculate which motifs/motif combinations are enriched within various motifs. Note
that the computations performed by this program are also performed by Lever itself,
but we have found it useful to have this as an additional, stand-alone component.

In this manual we describe how to run each of these programs, as well as the formatting
of the various input and output files.

II. Compilation of programs and system requirements:
On the Bulyk Lab website (http://thebrain.bwh.harvard.edu/Lever/) we have provided
pre-compiled versions of the four programs in the as well as the source code
accompanied with Makefile and Readme file. The programs were compiled using what
LINUX Kubuntu 32-bit processor.
If you would like to (re)compile these programs yourself, you will first need to download
and install the Gnu Scientific Library (available from http://www.gnu.org/software/gsl/)
and then follow the instructions in the Readme file.
III. PhylCRM_preprocess
As stated above, the purpose of PhylCRM preprocess is to 1) get various statistical
parameters for each of the motifs under consideration, and (if the –F option described
below is specified) to 2) generate length-matched background gene sets for a given input
collection of foreground gene sets.

 3

If you type “./phylcrm_preprocess_1.1” at the command line in the directory where the
program is installed, you get the following output

Usage:
 Required arguments:
 [-T] [tree file]
 [-O] [output directory]
 [-S] [directory containing original sequences]
 [-M] [motifs and PFM cutoffs file]

 Optional arguements:
 [-F] [foreground gene sets file]
 [-U] [change lower to upper case|0]
 [-P] [pseudo count|0.1]
 [-E] [JC or HKY|HKY]
 [-W] [max|500]
 [-R] [inclusive or restrictive|0]
 [-EP] [epsilon value for length matching|0.02]
 [-DEOVERLAP]

Here, we provide a brief description of each of these input parameters. Note that the first
four parameters (i.e., [-T], [-O], [-S] and [-M]) are required in order for
PhylCRM_preprocess to run, while the others are optional. If the optional parameters are
not set, then PhylCRM_preprocess will automatically default to the value shown in this
list after the “|” value.

In this section, we first describe the function and sytax of each of these input parameters,
and we then explain the various output files of PhylCRM_preprocess.

Input Parameters
1) [-T][tree file] This is the directory and file name of where the tree that will be utilized
in this PhylCRM run is stored (e.g. “/home/trees/sample.txt”). We note that there are no
restrictions on the naming of this tree. The input phylogenetic tree must be in Newick
format, which makes use of nested parentheses. For example, the phylogenetic tree

 4

is represented by the tree

(((SpeciesA:0.2,SpeciesB:0.2):0.1,SpeciesC:0.3):0.15,SpeciesD:0.45);

The following link from the web-page of Felsenstein contains more details on Newick-
formatting

http://evolution.genetics.washington.edu/phylip/newicktree.html

Here, the names given to the species and written inside the parentheses can be any string,
but these names must correspond to the names given to the files containing the
sequences. Specifically, if one was using the phylogenetic tree shown above, then the
sequence files would need to be named “sequence_SpeciesA.txt,”
“sequence_SpeciesB.txt,” “sequence_SpeciesC.txt,” and “sequence_SpeciesD.txt” (see
the “Sequence Formatting” section for more details on the input sequence files).

Note that if you wanted to consider only one genome, then the input tree file should
simply state the name of the base genome and not include any parentheses. For example,
using the example above would give

SpeciesA

Note that for all programs in this suite that require an input phylogenetic tree, it is
CRUCIAL that the FIRST species listed in the input string be the base genome (i.e., the
species within which it is desired to find cis regulatory modules (CRMs)). Also, note that
we will use the term “base genome” throughout this manual to denote the genome being
searched for CRMs, and we will refer to all other genomes as “alignment genomes.”

2) [-O][output directory] This parameter states the directory where all of the output files
that are generated by PhylCRM_preprocess should go. A description of these output files
is provided below.

3) [-S][directory containing original sequences] PhylCRM_preprocess (as well as
PhylCRM and Lever) takes as input a collection of sequence files that should be in one-
to-one correspondence with the species in the input phylogenetic tree. Each of these files

 5

must begin with “sequence_”, end in “.txt”, and be exactly identical to the species list in
the phylogenetic tree between these identifiers. Thus, as stated in the description of the –
T parameter in 1), the input sequence files should be named “sequence_SpeciesA.txt,”
“sequence_SpeciesB.txt,” “sequence_SpeciesC.txt,” and “sequence_SpeciesD.txt”. Each
of these files should be located in the same directory, and this input parameter lets the
program know where they are located.

The input sequence files should be in FASTA format, where the first line of each
sequence record begins with a “>” followed by any desired identification about the
sequence. The next line contains the sequence to be scanned for matches to the input
motifs. For example, an input sequence file might look like

>Sequence_1 chr22 start=130001 stop=130101 strand=+
ACATACAGTTGTTCACTGATACATTACCATTAACCTTAAAATCTGTCATCTCTCTATGTTTTGGGTC
TCTGTACTATACCTTAGTACCTATAGGTATACT
>Sequence_2 chr3 start=15022 stop=15122 strand=-
CATTCATGATCTAGTTGGGGCGCGCGCatatcttgctgactgactgggtttagtgatgtctagtatt
tcccttagtatctagggctatcttggtctcGGG

...

There are a few important conventions to be aware of
Convention #1) We use lower-case letters in the base genome to indicate sequences that
should be avoided when searching for conserved clusters of TF binding sites (for
example exons or repetitive regions). If you want to include the lower-case sequences in
scanning, then you can do this with the [-U] input parameter (see below).

Convention #2) There should be no breaks (i.e., newlines, tabs, spaces, etc) between
sequence records.

Convention #3) As stated above, there should be one sequence file for each species listed
in the input phylogenetic tree. The sequence records within these files need to be in one-
to-one correspondence across all of the input sequence files. First, this means that the
order of the sequence records needs to be the same across each of the input files. Second,
the identification line (i.e., the line that begins with a “>”) needs to be exactly identical
across the sequence files for each corresponding sequence record. Finally, the lengths of
corresponding sequences needs to be identical across the input files.

Convention #4) We have established a format for storing multiple alignments. In
particular, there are two conventions to be aware of regarding the alignment genomes.
First, if there is no orthologous sequence in an alignment genome, then a run of “r” letters
is put at that locus. The following example shows what the sequence files might contain
if there was no sequence in SpeciesB at an orthologous locus for the four example
species.

SpeciesA: …GTCACGTG…
SpeciesB: …rrrrrrrr…
SpeciesC: …GTGACGTG…
SpeciesD: …GTGAGGTG…

 6

Again, it is crucial that the lengths of all corresponding sequences in the base and
alignment genomes be identical.

Second, let’s assume that Species_A is the base genome (i.e., the genome being searched
for CRMs), and let’s assume that there was an insertion at this locus in Species_A and,
say, Species_B.

SpeciesA: …TT---GCA…
SpeciesB: …TT---GCA…
SpeciesC: …ATGACGCC…
SpeciesD: …TTGTCGTA…

If you would like to remove such indels in the base genome so that motif matches can be
observed that might involve, say, the sequence “TTGCA”, then we have established a
simple convention that allows conservation to be consistently evaluated. To denote that
any such sequence cannot be a conserved motif match in Species_C and Species_D, we
use lower case letters to denote the positions one to the left and one to the right of the
observed indels. Thus, the example above becomes

SpeciesA: …TTGCA…
SpeciesB: …TTGCA…
SpeciesC: …AtgCC…
SpeciesD: …TtgTA…

Here, if PhylCRM_preprocess (or PhylCRM or Lever) observes a lower case letter at a
position other than the first or last position of the motif in one of the alignment genomes,
then it knows that this motif match in the alignment genome cannot be conserved.

Convention #5) It is important that the sequence file that is input to PhylCRM_preprocess
be very large (more than 2 Mb of sequence per genome), as it is using these to estimate
various aspects of the motif distributions. Later on, when you are running PhylCRM or
Lever, if you want to consider a smaller set of sequences, that is fine—you can shrink it
down.

4) [-M][Motifs and PFM cutoffs file] This file contains the collection of input motifs, as
represented by position frequency matrices (PFMs). Here are three examples of what
acceptable input matrices might look like:

Sample_motif1 log 10
24 17 0 39 0 3 0 0
2 4 39 0 5 13 0 1
12 13 0 0 34 14 0 38
1 5 0 0 0 9 39 0

Sample_motif2 sd 2
0 0 100 25 0 0 100
0 0 0 25 0 100 0
0 100 0 25 0 0 0
100 0 0 25 100 0 0

 7

Sample_motif3
0 0 0 0 0 0
100 0 0 0 0 0
0 0 0 0 100 0
0 100 100 100 0 100

The first line of each is tab-separated, where the first element is a motif identifier that can
be any string, the second element (if it exists) is either “sd” or “log”, and the third
element (if it exists) is a number. For each motif, PhylCRM_preprocess (as well as
PhylCRM and Lever) needs to know a cutoff value to use in order to call a given locus a
“match” to the given motif. Here, let P(i,j) be the frequency with which letter i occurs in
column j of the position frequency matrix, and let Q(i) be the genomic frequency of this
letter. In deciding whether or not a given locus should be considered a “match” to a
motif at a given locus, PhylCRM first computes the standard likelihood ratio score
(which we denote here as S)

()
(){ }

∑ ∑
∈ =









=

TGCAi

w

j iQ
jiPS

,,, 1
2

,log

If the second entry in the tab-separated list is “log,” then the next number indicates a
cutoff value for S (for example, any locus where S>10 would be a match to
Sample_motif1 in the example above).

Alternatively, if the second entry of the tab-separated list is “sd,” then
PhylCRM_preprocess computes the expected value and variance of S under the
assumption that the locus is a motif. These are given by the values

() ()
(){ }

() ()
(){ }

() ()
(){ }

∑ ∑∑

∑ ∑

= ∈∈

= ∈































−





























=









=

w

j TGCAiTGCAi

w

j TGCAi

iQ
jiPjiP

iQ
jiPjiP

iQ
jiPjiP

1

2

,,,
2

,,,

2

2
2

1 ,,,
2

,log,,log,

,log,

σ

µ

In this case, PhylCRM_preprocess will consider the locus a match to the motif if S>(µ-
α*σ) where α is the third value in the tab-separated list (“2” in Sample_motif2).

Finally, if no values are specified in the second and/or third elements of the tab-separated
list, or if the second value is not “log” or “sd” then PhylCRM_preprocess will use a
default setting of “sd” and “2” (i.e., the same as what is shown in Sample_motif2).

5) [-F] [foreground gene sets file] In performing a Lever screen, one must input a set-
system that is comprised of (possibly many) subsets of a given collection of foreground
genes. For example, the initial foreground collection of genes might be the set of all
genes that are up-regulated in some cell type, and the subsets might be the intersections
of these genes with genes in various Gene Ontology categories that are over-represented
among the set of all up-regulated genes (as was done in the manuscript of Warner et al
where the PhylCRM and Lever tools were initially described). For each of these gene
subsets, it is also necessary that a background gene set be specified, so that the degree of

 8

enrichment for each motif/motif combination in the foreground subset, as compared to
the background subset, can be determined. In cases where the considered sequences are
of variable lengths, it is often the case that foreground subsets will on average have
longer/shorter lengths than expected by chance. Therefore, it is necessary that the
background set of genes be length-matched with respect to the foreground gene set.

This parameter of the program indicates where the set system on the foreground set of
genes is located. If it is specified, then PhylCRM will automatically build a length-
matched background set of genes for each input foreground set, and it will output a new
file that contains the information on the background set corresponding to each foreground
subset (see below for a description of this output file). The format of the input collection
of foreground subsets is as follows.

 SET sample_geneset_1
 >sequence1 chr=1 start=54312 stop=65371 strand=+
 >sequence7 chr=13 start=10001 stop=17391 strand=-
 >sequence3 chr=21 start=12020 stop=15533 strand=+
 …
 SET sample_geneset_2
 >sequence14 chr=5 start=79179 stop=83123 strand=-
 >sequence10 chr=21 start=84843 stop=88943 strand=-
 >sequence6 chr=2 start=102 stop=1953 strand=+
 …

Here, the use of the word “SET” tells PhylCRM_preprocess that this is the start of a new
foreground gene set. The letters that follow the word “SET” on the same line can be any
string that you want in order to identify the set, but the first three characters of that line
should be “SET”. The other lines tell PhylCRM_preprocess what sequences are in that
particular set. These lines must correspond EXACTLY to the identification lines in the
FASTA-formatted input sequence file given in parameter [-S] above—it is very
important that these agree exactly.

It should be noted that PhylCRM_preprocess will automatically remove any small gene
sets (less than 10 genes). Also, if you are running PhylCRM_preprocess with this option,
it is important that you have a large number of candidate background genes in your
original input sequence files, where “candidate background” means sequences that do not
appear in any foreground set. The basic way that length-matching works is that one
begins with a large number of candidate background genes and, for each foreground set,
PhylCRM_preprocess chooses some subset of these candidate background genes as a true
background set. In order to ensure that the length-matching is done accurately, it is
important that the initial list of candidates be as large as possible.

6) [-U] [change lower to upper case|0] As stated in the description of the [-S] parameter
above, PhylCRM_preprocess (as well as PhylCRM and Lever) ignores lower case letters
in the input sequence. If you want to include these lower-case letter, then set this

 9

parameter to “1”. Otherwise keep it as “0” (this is the default that will be used if no
argument is passed).

7) [-P] [pseudo-count|0.1] Values of “0” in the input PFM cause problems in computing
whether or not a given locus is a match to a PFM. A common practice to avoid this is to
include a pseudo-count to each element in the PFM, and this parameter specifies what
size of pseudo-count to use. If no value is specified, then a default value of 0.1 is used.

8) [-E] [JC or HKY|HKY] In calculating the Halpern-Bruno score, a model of nucleotide
change under the neutral model (i.e., no selective pressure) is needed. Two common
models are the “Jukes-Canotor” (JC) and the “Hasegawa-Kishino-Yano” (HKY) models.
The HKY model models the nucleotide frequencies as well as the transition vs.
transversion probabilities, while the JC model does not. If input, this parameter must be
either “JC” or “HKY”. If no value is passed, then the program automatically uses HKY.

9) [-W][max window size|500] This value specifies the maximum window size to use in
scoring windows of sequence as candidate CRMs in PhylCRM preprocess. The input
value must be an integer. If no value is passed, then a default of 500 is used.

10) [-R][inclusive or restrctive|0] As stated in the Supplementary Methods of the
manuscript of Warner et al, PhylCRM_preprocess, PhylCRM, and Lever have two modes
of evaluating conservation—where observing a lack of conservation decreases the
likelihood that a given motif match is functional (restrictive), and one where it does not
decrease this likelihood (inclusive). Passing a value of “1” in this parameter uses the
restrictive option, and a value of “0” uses the inclusive option (“0” is the default setting if
no value is passed).

11) [-EP][epsilon value for length matching| 0.02] This value only applies if one is using
PhylCRM_preprocess to generate a length-matched background sequence set (i.e., if you
are using the “–F” parameter), and it specifies the amount of length bias to tolerate in
selecting the length-matched background. In order to generate a length-matched
background, PhylCRM_preprocess works to ensure that the area under the receiver-
operating curve (AUC) does not deviate much from the expected value of 0.5 under the
null hypothesis of no distributional difference in lengths when comparing the foreground
and background regions. Let α be the input value given at this parameter, and let θ be the
observed AUC between foreground and background regions when ranking them by
lengths. Then PhylCRM_preprocess will ensure that

|θ - 0.5| < α
If no value is specified at this parameter, then a default value of 0.02 is used.

13) [-DEOVERLAP] As described in the Supplementary Methods of Warner et al, the
PhylCRM scoring scheme has the option of removing overlapping positions between
distinct motifs in order to avoid double-counting. This option specifies whether or not to
perform this de-overlapping step in PhylCRM_preprocess. If “-DEOVERLAP” is typed
at the command line, then de-overlapping will be performed; otherwise it will not be
performed.

 10

Note that the output motif statistics (see below) might be slightly different depending on
whether or not this de-overlapping step is performed. Therefore, whichever way it is
desired to run PhylCRM (i.e., with or without this overlapping step),
PhylCRM_preprocess should be run in the same way. Also, note that (because of
computational considerations) the Lever program does not perform de-overlapping.
Therefore if you are running PhylCRM_preprocess in order to generate motif statistics
files to later use with Lever, then you SHOULD NOT use the –DEOVERLAP option.

Output files from PhylCRM_preprocess
There are (up to) four basic types of output files from PhylCRM_preprocess. All of them
will be located in the directory that you specified as output in the [-O] parameter
described previously in this section.

1) Motif statistics files. These files will all be named “motif_parametersX_Y.txt” where
the number X corresponds to the number of the motif in the input file [-M], and it takes
values in the range 1, 2, 3, …. Thus, there will be one of these files for each motif in the
input motifs file. Similarly, Y will be the cutoff value used for declaring a motif match
ON THE LOG SCALE. Thus, a typical name for this output file might be something like
“motif_parameters3_6.29.txt”. If you open up this file, it should look like

500
0.000000
0.000000
0.974966 0.974966 0.512983 0.138900
0.972006 0.972006 0.920219 0.517723
0.969057 0.969057 1.252221 1.094035
0.966118 0.966118 1.528653 1.804756
0.963188 0.963188 1.762757 2.590461
… … … …

where there are three numbers that are each on their own line, followed by four columns
of numbers. The first number (here 500) indicates the maximum window size used in
PhylCRM_preprocess. The second two numbers (both 0.000000 here) indicate two
statistical parameters that will be used by the PhylCRM scoring scheme. The subsequent
four columns of numbers contain information on the parameterizations of the window
scores for each possible window size up to the maximum window size (thus, in this
example there should be 500 rows for each of these four columns).

Together, all of these numbers will be used by PhylCRM and/or Lever to construct
distributions of window scores under the null hypothesis of no enrichment. Note that
when using these files in PhylCRM or Lever, the max window size can be less than the
value input to PhylCRM_preprocess. Thus, if a max window size of 500 was used in
PhylCRM_preprocess, then a max window size of 300 (but not 600) could be used by
PhylCRM or Lever.

 11

2) A motif locations file. This is a single file named “motif_locations.txt” that specifies
the names and directories of all of the motif files generated by PhylCRM_preprocess. It
might look something like

 /home/myOutput/motif_parameters1_6.33.txt
 /home/myOutput/motif_parameters2_12.01.txt
 /home/myOutput/motif_parameters3_8.42.txt
 /home/myOutput/motif_parameters4_3.75.txt

This file will be passed to PhylCRM and/or Lever (see below). Note that it is possible to
edit this file if you want to change the set of motifs considered. For example, let’s say
you run PhylCRM_preprocess on four motifs and generate the above motif_locations file,
but in a later run you want to ignore motif 3. Then you could simply use a file that
contained

 /home/myOutput/motif_parameters1_6.33.txt
 /home/myOutput/motif_parameters2_12.01.txt
 /home/myOutput/motif_parameters4_3.75.txt

Note that if you start making your own motif_locations.txt based on motif parameters
files from old PhylCRM_preprocess runs, that’s fine. The motif parameters files don’t
need to be in the same directory as your newly-created motif_locations file (although you
do need to correctly specify the directories and file names in the motif_locations file).

3) Sequence files. If you run PhylCRM_preprocess with the –F parameter, it will
generate a background gene set for each input foreground gene set. The original
sequence files passed to PhylCRM_preprocess with the –S parameter contain many
sequences, and not necessarily all of these sequences will end up in some foreground or
background set. Therefore, PhylCRM_preprocess generates a new set of sequence files
(also named, for example, “sequence_SpeciesA.txt,” “sequence_SpeciesB.txt,”
“sequence_SpeciesC.txt,” sequence_SpeciesD.txt”) where ANY UNUSED
SEQUENCES FROM THE ORIGINAL SEQUENCE FILES HAVE BEEN REMOVED.
Note that these files will be written to whatever directory you specified as the output
directory with the “-O” argument.

Note that IT IS VERY IMPORTANT THAT YOU USE THESE SEQUENCE FILES,
INSTEAD OF THE ORIGINAL SEQUENCE FILES, AS INPUT TO PHYLCRM OR
LEVER. PhylCRM_preprocess outputs a set systems file that contains information on
which sequences are in each foreground/background set (see the next item below), and
the indexes used in that file refer to these newly created sequence files rather than the
original ones. Thus, you need to make sure that you are using these new sequence files in
all subsequent steps.

4) A set systems file. If you run PhylCRM_preprocess with the –F parameter, then this
file will appear in the output directory that contains information on which sequences are
in each of the foreground and corresponding background sets. This file looks like

 12

 SET sample_geneset_1
 73
 14
 53
 72
 81
 96
 233
 234
 …
 SET sample_geneset_2
 57
 7
 19
 53
 72
 99
 133
 187
 212
 …
Each instance of the word SET indicates a new foreground gene set and its corresponding
background gene set. The number in the line directly below the line containing the word
SET indicates the number of foreground genes in the set. Thus, in this example,
sample_geneset_1 has 73 foreground genes and sample_geneset_2 has 57 foreground
genes. Next, the tab-indented numbers that follow in each line indicate the 0-based
indexes of the genes in the sequence files that are part of one of these foreground or
background gene sets, where the foreground genes are listed first, followed by the
background genes. Thus, in sample_geneset_1 the 7th, 19th, 53rd, etc genes in the
corresponding “sequence_...” files comprise the foreground regions for that set, and all
numbers after the first 73 indicate the indexes of the background genes that should be
used.

5) A counts file. This file is named “counts1” and contains the mononucleotide
frequencies of all of the utilized nucleotides. The output looks like

A 0.2582393484
C 0.2442982456
G 0.2476503759
T 0.2498120301

IV. Lever
The purpose of the Lever program is to perform an in silico screen that systematically
evaluates the degree of enrichment for various motifs/motif combinations within various
input foreground gene sets.

 13

If you type “./lever_1.1” at the command line in the directory where the program is
installed, you get the following output

Usage:
 Required arguments:
 [-T] [tree file]
 [-O] [output directory]
 [-N] [output file name]
 [-S] [directory sequences]
 [-M] [motifs and PFM cutoffs file]
 [-BG] [file giving locations of gamma parameters]
 [-ID] [set systems file]

 Optional arguments:
 [-OR] [0 or 1|1]
 [-AND] [0 or 1|0]
 [-WOR] [0 or 1|0]
 [-WAND] [0 or 1|0]
 [-COMP] [0 or 1|0]
 [-CO] [number of motifs in a combination]
 [-U] [change lower to upper case|0]
 [-P] [pseudo count|0.1]
 [-E] [JC or HKY|HKY]
 [-W] [max|500][min|100]
 [-R] [inclusive or restrctive|0]
 [-MH] [FWER or FDR|FDR]
 [-nP] [number of permutations|1000]
 [-matrixoutput]
 [-statistics]
 [-LP] [length penalization]

Here, we explain each of these input parameters, and the syntax for using them. We then
explain the outputs of Lever.

Input parameters
1) [-T][tree file] This is exactly the same as the [-T] file described in
PhylCRM_preprocess above. Note that you should make sure to use the same
phylogenetic tree as what was used by PhylCRM_preprocess to make the corresponding
motif parameterization files.

2) [-O][output directory] As with the –O command described for PhylCRM_preprocess
above, this parameter specifies where the output should go.

 14

3) [-N][output file name] This parameter specifies what the name of the output file for
Lever should be. Let’s say you specify this parameter to be “-N lever_output.txt.” Then
Lever will generate an output file named “lever_output.txt.”

4) [-S][sequence directory] As with the –S parameter for PhylCRM_preprocess above,
this parameter describes where the input sequence files reside. Again, this directory
should contain one sequence file for each genome being considered.

5) [-M][motifs and PFMs cutoffs file] As with the –M file described above for
PhylCRM_preprocess, this file will contain all of the input motifs as well as information
on what cutoff to use in considering a motif a match.

6) [-BG][file giving locations of motif parameters] As with the [-BG] parameter
described above for PhylCRM, this file corresponds contains the locations (i.e.,
directories and file names) of all of the motif parameters files used in the current Lever
run. This will be the motif_locations.txt file described in the section above on the outputs
of PhylCRM_preprocess, or a modified version of it. Note that, due to computational
constraints, Lever does not consider the “deoverlapping” step described in the section on
PhylCRM_preprocess. Thus, in using PhylCRM_preprocess to generate the motif
parameters for a Lever screen, it is important that you do not use the “-DEOVERLAP”
parameter.

7) [-ID] [set systems file] This is an input file that contains information on all of the
foreground gene sets (and their corresponding background gene sets) to use in the current
Lever screen. The format of this file should be exactly the same as what was described
above for the set systems output of PhylCRM_preprocess (i.e., output 4) described in the
section on PhylCRM_preprocess outputs).

8) [-OR] [0 or 1|1]
 [-AND] [0 or 1|0]
 [-WOR] [0 or 1|0]
 [-WAND] [0 or 1|0]
 [-COMP] [0 or 1|0]
These parameters indicate which Boolean combinations of the motifs to consider in the
current Lever screen. The terms “OR,” “AND,” “WOR,” “WAND,” and “COMP” refer
to the Boolean and weighted Boolean motif combinations described for input parameter
7) in the description of PhylCRM. Note, however, that here the Boolean combination
choices are not mutually exclusive, as they were in PhylCRM. Thus, if you type “-OR 1
–AND 1 –WOR 1 –WAND 1 –COMP 1”, you will consider OR, AND, weighted OR,
weighted AND, and Compound Boolean combinations of the input motifs (a full list of
compound Boolean Combinations considered by PhylCRM/Lever is given in the
Supplementary Methods of Warner et al). Similarly, “-OR 1 –AND 1 –WOR 0 –WAND
0 –COMP 0” would consider only OR and AND combinations. Note that if no values are
specified, then only the OR combinations of the input motifs will be considered.

 15

9) [-CO] [number of motifs in a combination] Lever can take large numbers of motifs
(i.e. >100) as input. Practically, it might not make sense to consider all combinations of
the input motifs (for example considering all combinations of 100 motifs would involve
2100 combination). This parameter is used to specify the maximum number of motifs that
can be in a combination. For example if you use “-CO 2,” and you have 100 input
motifs, then you will screen with all 100 motifs individually, plus all 4950 (=100*99/2)
pair-wise combinations.

Note that, because of computational considerations no more than 3-way combinations of
motifs can be considered with the WOR and WAND combinations, and no more than 4-
way combinations can be used with the COMP parameter. Thus, if you use “–CO 2”
only weighted and compound combinations involving 2 motifs will be considered.
Similarly, if you use “-CO 5” then only weighted combinations involving 3 or fewer
motifs and Compound combinations involving 4 or fewer motifs will be considered
(although OR and AND combinations involving up to 5 motifs will still be considered).

10) [-U] [change lower to upper case|0] This is exactly the same as the –U command for
PhylCRM_preprocess and PhylCRM. It specifies whether or not to change the lower
case letters to upper case.

11) [-P] [pseudo count|0.1] This is exactly the same as the –P parameter described above
for PhylCRM_preprocess and PhylCRM. Again, it is important that the same value be
used here as what was used in PhylCRM_preprocess in order to generate the motif
parameterizations.

10) [-E] [JC or HKY|HKY] This is exactly the same as the –E parameter described above
for PhylCRM_preprocess and PhylCRM. Again, it is important that the same value be
used here as what was used in PhylCRM_preprocess in order to generate the motif
parameterizations.

11) [-W] [max|500][min|100] This is exactly the same as the –W parameter described
above for PhylCRM.

12) [-R][inclusive or restrctive|0] This is exactly the same as the –R parameter described
above for PhylCRM_preprocess and PhylCRM. Again, it is important that the same
value be used here as what was used in PhylCRM_preprocess in order to generate the
motif parameterizations.

13) [-MH] [FWER or FDR|FDR] As stated above, Lever screens many gene sets for
enrichment for many different motifs. A crucial aspect of this screening procedure is
correcting for the many hypotheses being tested. Two common means for multiple
hypothesis testing are “family-wise error rate (FWER)” and “false discovery rate (FDR)”.
This parameter specifies which of these two options to use, and the input syntax should
be either “-MH FWER” or “-MH FDR”. If no input value is specified, then “FDR” is
used.

 16

14) [-nP] [number of permutations|1000] In order to calculate statistical significance
while controlling for the many (non-independent) hypotheses being tested, Lever
performs a permutation test. This parameter specifies how many permutations to perform
in order to calculate significance. If no value is specified, then a default of “1000” is
used.

15) [-THRESHOLD] This is exactly the same as the –THRESHOLD parameter described
above for PhylCRM_preprocess and PhylCRM.

16) [-matrixoutput] The Lever algorithm generates a pair of matrices which are referred
to as “Y” and “X” in the Methods section of the main text of Warner et al. The rows of Y
correspond to the input sequences (both foreground and background) and the columns
correspond to the gene sets under consideration. Each element of the Y matrix specifies
whether the corresponding gene is a member of the foreground or background set for the
corresponding gene set. Similarly, the rows of X correspond to the input sequences (as
for the Y matrix), and the columns correspond to motifs/combinations of motifs. Each
element of the X matrix gives the score of the maximum-scoring window of sequence
when scanning the corresponding gene with the corresponding combination of motifs
with PhylCRM.

Once these Y and X matrices have been generated, Lever uses them in a permutation test
in order to calculate the enrichment of each motif/motif combination in each gene set of
interest. If one types “-matrixoutput” then these matrices will be output to the disk,
otherwise they will not (see below for a description of what the output matrices will look
like). If these matrices are output, then they can be used in subsequent Lever_statistics
(see below) runs.

17) [-statistics] This parameter indicates whether or not to perform the permutation test
within Lever, or to stop after the generation of the Y and X matrices. If “-statistics” is not
typed at the command line, then Lever will not perform the permutation test (if you use
this option, then you should make sure to also type “-matrixoutput”, or else there will be
no output at all). If you type “-statistics” then the permutation test will be performed
using the method of multiple hypothesis correction specified by the “-MH” parameter and
the number of permutations specified by the “-nP” parameter.
18) [-LP] [length penalization] In the case where the input sequences are of variable
lengths, there can be substantial correlation between the score of the maximum scoring
window of sequence and the overall length of the sequence. If one uses this option by
typing “-LP” at the command line, then a regression of scores against sequence lengths is
performed. Thus, this option helps to remove some of the dependence of the scores on
the lengths of the sequence, which we have observed to improve the observed signals.

Output files of Lever
Lever outputs three basic types of files.

1) Output statistics from the permutation test. Let’s say you use “–N lever_output.txt”,
then a file named “lever_output.txt” will be created in your output directory. This will be

 17

non-empty only if you run Lever with the “-statistics 1” option, and it contains a
summary of the results from the permutation test.

OR COMBINATIONS OUTPUT:
 SET=0 NUM TFs=1 COMBO INDEX=(0) pval=1.00 stat=0.40 mean=0.49 sd=0.04 error=(0.35,0.45)
 SET=0 NUM TFs=1 COMBO INDEX=(1) pval=0.11 stat=0.58 mean=0.50 sd=0.05 error=(0.53,0.63)
 SET=0 NUM TFs=1 COMBO INDEX=(2) pval=0.12 stat=0.57 mean=0.49 sd=0.04 error=(0.52,0.65)
 SET=0 NUM TFs=1 COMBO INDEX=(3) pval=0.21 stat=0.55 mean=0.49 sd=0.04 error=(0.49,0.68)
 SET=0 NUM TFs=2 COMBO INDEX=(0,1) pval=0.34 stat=0.52 mean=0.49 sd=0.04 error=(0.47,0.58)
 SET=0 NUM TFs=2 COMBO INDEX=(0,2) pval=0.18 stat=0.55 mean=0.49 sd=0.04 error=(0.51,0.61)
 SET=0 NUM TFs=2 COMBO INDEX=(0,3) pval=0.98 stat=0.44 mean=0.49 sd=0.04 error=(0.38, 0.48)
 SET=0 NUM TFs=2 COMBO INDEX=(1,2) pval=0.00 stat=0.67 mean=0.49 sd=0.04 error=(0.64,0.71)
 SET=0 NUM TFs=2 COMBO INDEX=(1,3) pval=0.01 stat=0.65 mean=0.50 sd=0.05 error=(0.605,0.69)
 SET=0 NUM TFs=2 COMBO INDEX=(2,3) pval=0.11 stat=0.57 mean=0.49 sd=0.04 error=(0.51,0.62)
 SET=0 NUM TFs=3 COMBO INDEX=(0,1,2) pval=0.01 stat=0.63 mean=0.49 sd=0.04 error=(0.59,0.67)
 SET=0 NUM TFs=3 COMBO INDEX=(0,1,3) pval=0.08 stat=0.58 mean=0.49 sd=0.04 error=(0.53,0.63)
 SET=0 NUM TFs=3 COMBO INDEX=(0,2,3) pval=0.26 stat=0.54 mean=0.49 sd=0.04 error=(0.49,0.59)
 SET=0 NUM TFs=3 COMBO INDEX=(1,2,3) pval=0.02 stat=0.65 mean=0.49 sd=0.04 error=(0.62,0.69)
 SET=0 NUM TFs=4 COMBO INDEX=(0,1,2,3) pval=0.01 stat=0.64 mean=0.49 sd=0.04 error=(0.59,0.69)

AND COMBINATIONS OUTPUT:
 SET=0 NUM TFs=1 COMBO INDEX=(0) pval=1.00 stat=0.40 mean=0.49 sd=0.04 error=(0.35,0.45)
 SET=0 NUM TFs=1 COMBO INDEX=(1) pval=0.11 stat=0.58 mean=0.50 sd=0.05 error=(0.53,0.63)
 SET=0 NUM TFs=1 COMBO INDEX=(2) pval=0.12 stat=0.57 mean=0.49 sd=0.04 error=(0.52,0.61)
 SET=0 NUM TFs=1 COMBO INDEX=(3) pval=0.21 stat=0.55 mean=0.49 sd=0.04 error=(0.49,0.60)
 SET=0 NUM TFs=2 COMBO INDEX=(0,1) pval=0.31 stat=0.53 mean=0.49 sd=0.04 error=(0.48,0.59)
 SET=0 NUM TFs=2 COMBO INDEX=(0,2) pval=0.32 stat=0.53 mean=0.49 sd=0.04 error=(0.49,0.57)
 SET=0 NUM TFs=2 COMBO INDEX=(0,3) pval=0.97 stat=0.44 mean=0.50 sd=0.04 error=(0.39,0.49)
 SET=0 NUM TFs=2 COMBO INDEX=(1,2) pval=0.01 stat=0.63 mean=0.49 sd=0.04 error=(0.59,0.67)
 SET=0 NUM TFs=2 COMBO INDEX=(1,3) pval=0.02 stat=0.63 mean=0.50 sd=0.04 error=(0.58,0.68)
 SET=0 NUM TFs=2 COMBO INDEX=(2,3) pval=0.20 stat=0.56 mean=0.49 sd=0.05 error=(0.51,0.62)
 SET=0 NUM TFs=3 COMBO INDEX=(0,1,2) pval=0.10 stat=0.59 mean=0.49 sd=0.05 error=(0.54,0.63)
 SET=0 NUM TFs=3 COMBO INDEX=(0,1,3) pval=0.10 stat=0.59 mean=0.50 sd=0.04 error=(0.53,0.63)
 SET=0 NUM TFs=3 COMBO INDEX=(0,2,3) pval=0.28 stat=0.53 mean=0.49 sd=0.04 error=(0.48,0.58)
 SET=0 NUM TFs=3 COMBO INDEX=(1,2,3) pval=0.02 stat=0.62 mean=0.50 sd=0.04 error=(0.57,0.67)
 SET=0 NUM TFs=4 COMBO INDEX=(0,1,2,3) pval=0.01 stat=0.65 mean=0.50 sd=0.05 error=(0.59,0.70)

This output shows a Lever screen on a single gene set using four TFs and the Boolean
combinations OR and AND. Here the first column indexes the gene sets that are
considered (0-based), and the second column indexes the number of TFs in the
combination under consideration. The third column indexes which TFs are in that
combination. The fourth column gives the statistical significance of the enrichment after
correction for multiple hypothesis testing (either FDR or FWER), and the fifth column
gives the value of the AUC that measures the degree of enrichment for the TFs under
consideration in the given gene set under consideration (see Warner et al). The columns
with the “mean” and “sd” indicate the mean and standard deviation, respectively, of the
AUC under the permutation test. Finally, the “error” column gives a bootstrap-based
estimate of the confidence intervals (1 standard deviation) for the AUC.

Note that if the –WOR, -WAND, or –COMP options had been used, then additional sets
of outputs would have appeared for these Boolean output types.

2) A file that indicates which genes are in the various gene sets of interest. This is in the
output directory and named “indicator_matrix.txt”, and it is the Y matrix described above.
This file is in a matrix form (tab-separated, new-line delimited), and should have as many
rows as there are genes in the input sequence file, and the number of columns should be 2

 18

greater than the number of input gene sets. Here, the first column indexes the number of
genes under consideration, and the second column is a “1” if the corresponding gene is in
some foreground set, and a “0” otherwise. The remaining columns correspond to gene
sets, and each element is a “1” if the corresponding gene is in the foreground or
background of that gene set, and a “0” otherwise.

3) A file that indicates the scores of all of the genes for each of the motif combinations
under consideration. These will be called “ORmatrix.txt”, “ANDmatrix.txt”,
“WORmatrix.txt”, “WANDmatrix.txt” and “COMPmatrix.txt” and (depending on which
Boolean combinations of motifs you consider) they will appear in your stated output
directory. The rows of these matrices correspond to the genes in the input sequence files,
and the columns correspond to the various Boolean combinations of motifs that are being
considered (thus, this file is the X matrix described above).

Note that if you want to pass these matrices on to Lever_statistics as one big matrix, you
will need to merge them while keeping corresponding rows together.

Lever_statistics
As stated in the previous sections, Lever performs two basic operations: 1) It first builds
the Y and X matrices that indicate set membership of genes and their scores across
various Boolean combinations, respectively. 2) It performs a permutation test in order to
calculate the statistical significance of each motif combination within each gene set. The
program Lever_statistics allows step 2) to be performed in isolation. It takes as input a
pair of Y and X matrices, and it outputs the statistical significance of genes within gene
sets.

If you type “./lever_statistics_1.1” in the directory where the program is stored, the
following output appears.

Usage:
 Required arguments:
 [-O] [output directory]
 [-N] [output file name]
 [-Y][Indicator Matrix]
 [-X] [Score Matrix]

 Optional arguements:
 [-MH] [FWER or FDR|FDR]
 [-nP] [number of permutations|1000]

Here, we explain each of these input parameters, and the syntax for using them. We then
explain the outputs of Lever_statistics.

Input parameters

 19

1) [-O] [output directory] This parameter indicates where the directory where all output
files will be located.

2) [-N] [output file name] This parameter indicates what to name the output file given by
Lever_statistics.

3) [-Y] [Indicator Matrix] This parameter is the indicator matrix described as output 2 of
Lever in the preceding section. It contains information on which genes are elements of
which gene sets.

4) [-X] [Score Matrix] This parameter is the score matrix described as output 3 of Lever
in the preceding section. It contains information on which genes are elements of which
gene sets. Note that if it is desired to evaluate various types of Boolean motif
combinations (OR, AND, WOR, WAND, COMP) while correcting for multiple
hypothesis testing across all of them, then these matrices will need to be merged together
into a single matrix.

5) [-MH] [FWER or FDR|FDR] This is exactly the same as the –MH parameter described
above for Lever.

6) [-nP] [number of permutations|1000] This is exactly the same as the –MH parameter
described above for Lever.

Files Output by Lever_statistics
Lever_statistics outputs a single file that very closely resembles output 1) of Lever
described above. However, information on which columns correspond to which Boolean
combinations of motifs has been lost. Thus, the output given by Lever_statistics does not
contain a column that indicates the number of TFs in the combination. Also, the column
with the “COMBO INDEX=” parameter now simply has an integer following it that
indexes the corresponding column in the input X matrix.

