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We developed an algorithm, Lever, that systematically maps

metazoan DNA regulatory motifs or motif combinations to sets

of genes. Lever assesses whether the motifs are enriched in

cis-regulatory modules (CRMs), predicted by our PhylCRM

algorithm, in the noncoding sequences surrounding the genes.

Lever analysis allows unbiased inference of functional

annotations to regulatory motifs and candidate CRMs. We

used human myogenic differentiation as a model system to

statistically assess greater than 25,000 pairings of gene sets

and motifs or motif combinations. We assigned functional

annotations to candidate regulatory motifs predicted previously

and identified gene sets that are likely to be co-regulated via

shared regulatory motifs. Lever allows moving beyond the

identification of putative regulatory motifs in mammalian

genomes, toward understanding their biological roles. This

approach is general and can be applied readily to any

cell type, gene expression pattern or organism of interest.

Of fundamental importance for understanding transcriptional
regulatory networks is the functional annotation of DNA regula-
tory motifs (typically B6–15 bp in length) in terms of what groups
of target genes they regulate in a tissue- or temporal-specific
manner in response to environmental perturbations. Although
effective computational methods for mapping DNA regulatory
motifs exist in the yeast Saccharomyces cerevisiae, where the DNA
binding sites of regulatory transcription factors typically occur
within B600 bp upstream of genes, these methods cannot be
applied to metazoan genomes, where genes in the same
expression cluster are not necessarily co-regulated by a common
mechanism, and the regulatory elements can be far from the
transcription start site1.

In metazoans, regulatory motifs tend to co-occur in stretches of
noncoding sequence, CRMs, that regulate expression of nearby
gene(s). Many approaches have resulted in successful identification
of CRMs1–4, but such approaches do not attempt to predict
ab initio the gene expression patterns or functions of the genes

regulated by the CRMs. Although algorithms have been developed
recently for evaluating the regulatory importance of CRM binding
site composition5,6, thus far they have been unable to evaluate the
vast sequence regions beyond the proximal promoter that must be
considered in mammalian genomes.

Because of these complications, analyses of transcriptional reg-
ulatory elements in mammals have focused either on the prediction
of CRMs starting with a collection of known co-regulatory tran-
scription factors whose DNA binding specificities are known and
a set of genes that the transcription factors may regulate2,3,7,8,
or on the computational identification of ‘motif dictionaries’9–12.
However, with the advent of high-throughput methods for
assembling motif dictionaries, from either chromatin immuno-
precipitations13 or protein binding microarrays14–16, the major
computational problem to solve will shift from motif prediction
to identifying and associating CRMs to both specific genes and
biological processes17.

Therefore, we developed a computational algorithm, Lever, that
systematically identifies the target gene sets that are likely to be
regulated by a query collection of candidate regulatory motifs. The
ability to screen many gene sets with many motifs or motif
combinations allows us to tackle the difficulty in a priori identifica-
tion of co-regulated gene sets. Lever does not perform de novo motif
discovery but rather evaluates an input collection of motifs for
enrichment within candidate CRMs in the noncoding sequences
flanking various input gene sets (Fig. 1a).

In this study we considered 75 kb of noncoding sequence
flanking each gene (50 kb upstream to 25 kb downstream of
transcription start site). Lever considers a collection of user-defined
gene sets; in this study, we considered Gene Ontology (GO)
categories and clusters of coexpressed genes as our gene sets of
interest. We examined differentiation of human myoblasts into
myotubes and considered 101 myogenic gene sets and 174 candi-
date regulatory motifs. We define a ‘GM pair’ to be the pairing of an
individual gene set with a particular query motif or motif combi-
nation. Specifically, for each GM pair, Lever evaluates the degree to
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which the noncoding sequences surrounding the transcription start
sites of the genes in the gene set are enriched for candidate CRMs
comprising the given motif or motif combination under considera-
tion as compared to a random background set of genes.

To predict candidate CRMs, we developed a tool, termed
PhylCRM, which quantifies both motif conservation18 and
site clustering across multiple genomes. We experimentally
validated several predicted CRMs from among the most significant
(Q r 0.05) GM pairs in this study. Lever considered only the
highest-scoring candidate CRM for each gene (Fig. 1). Each such
GM pair can be thought of as an individual element of a gene set by
motif or motif combination matrix (Fig. 1b). In this study, we
assessed more than 25,000 GM pairs.

Identification of significant GM pairs from Lever analysis allows
one to assign functional annotation to motifs at the level of
GO categories and gene expression patterns. Although prior studies
attempted to broadly annotate motifs at the level of tissue

specificity9, Lever assigns specific functional annotation to
metazoan motifs and thus provides an entrée into targeted experi-
mentation aimed at understanding the logic of cis-regulatory
elements. Lever can be applied to any cell type, gene expression
pattern or organism of interest to connect regulatory motifs to their
biological functions and to gain insight into the architecture of
transcriptional regulatory networks.

RESULTS
Identification of CRMs by PhylCRM
Candidate CRMs are first identified and scored with PhylCRM
(Supplementary Figs. 1–3 online), which scans the genomes of
interest for matches to an input set of regulatory motifs. PhylCRM
combines data for individual motif occurrences scored on an
alignment using the previously described MONKEY scoring
scheme18 into a single CRM prediction. PhylCRM can scan very
long (here, 75-kb) genomic sequences for candidate CRMs by

quantifying both motif clustering and con-
servation across arbitrarily many genomes
using an evolutionary model consistent with
the phylogeny of the genomes. In the Lever
analyses described in this study, we used the
phylogenetic tree containing all 8 sequenced
mammalian genomes (human, chimp,
macaque, mouse, rat, dog, cow and opos-
sum; Supplementary Fig. 4 online19).
PhylCRM identified significantly scoring
candidate CRMs of varying lengths, ranging
from 20 to 500 bp, and scored them to
identify the maximum scoring window
for each gene (Fig. 1b). PhylCRM can
also be used as a stand-alone program for
CRM prediction.

Scoring GM pairs by Lever
We then input into Lever CRM scores for all
genes in the genome (predicted by
PhylCRM) and a collection of gene sets. To
evaluate GM pairs, Lever first assigns to each
gene in the ‘foreground’ gene set of interest
input by the user, and to each gene in the
automatically created length-matched
‘background’, the PhylCRM score of the
best-scoring CRM. Considering all the
genes in the foreground gene set and all
background genes, Lever then ranks the
genes according to the PhylCRM score of
each gene’s single best scoring candidate
CRM (Fig. 1b). Then, for each entry in the
GM pair matrix, Lever calculates both
the value of the corresponding area under
the curve in a receiver operator character-
istic plot (AUC score) and its corresponding
Q value (Fig. 1b). The AUC score indicates
the probability that a randomly chosen
member of the foreground gene set will
rank higher than a randomly chosen
background gene, whereas the Q value indi-
cates the false discovery rate. In initial
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Figure 1 | Lever schema. (a) Lever simultaneously identifies: (i) motifs or motif combinations, (ii) their

sets of co-regulated genes and (iii) cis-regulatory modules containing the enriched motifs or motif

combinations. (b) Schematic depiction of the Lever scoring scheme. For each GM pair Lever searches for

candidate CRMs (step 1) and, for each GM pair and all corresponding background genes, ranks the genes

according to the PhylCRM score of each gene’s single best-scoring candidate CRM (step 2). Lever evaluates

the enrichment (AUC statistics) of a given GM pair (step 3) and repeats this for all other GM pairs (red

and yellow matrix; step 4). The statistical significance of each AUC (indicated by a Q value, blue matrix)

is calculated by permutation approach for multiple hypothesis correction (step 5).
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positive-control analyses, we considered the four well-known
myogenic transcription factor binding site motifs for the transcrip-
tional activators20 MEF2, serum response factor (SRF), Tead and
the myogenic regulatory factors (MRFs) MyoD, Myogenin, Myf5
and Myf6, and showed that significant (P o 10–7) motif enrich-
ment can be detected when scanning 75-kb regions of genomic
sequence (Supplementary Fig. 4).

Identification of myogenic gene sets to be examined by Lever
We considered two sources of gene sets: (i) clusters of coexpressed
genes and (ii) GO categories. To identify appropriate gene expres-
sion clusters for examining the functions of motifs during myogenic
differentiation, we first performed expression profiling over a time
course of the differentiation of primary human skeletal myoblasts
into myotubes at –24, –12, 0, +12, +24 and +48 h relative to
stimulation of differentiation. We discovered 591 upregulated and
1,070 downregulated genes at a false discovery rate of 5%. Using
k-means clustering, we partitioned these genes into 14 expression
clusters, C0–C13 (Fig. 2a and Supplementary Table 1 online),
many of which showed enrichment for GO annotation terms

consistent with myogenic differentiation (Supplementary Table 2
online). We excluded cluster C13 from Lever analyses because it
contained only 12 genes. As additional gene sets to be examined by
Lever, we identified the GO categories that were significantly
enriched within either the up- or downregulated genes during the
timecourse of myogenic differentiation and took their intersection
with either the up- or downregulated genes, yielding a final total
of 101 gene sets. We did not use GO categories alone as gene sets in
this study.

Lever evaluation on expression data and four myogenic motifs
We first applied Lever to systematically analyze each of the myogenic
differentiation expression clusters considering all four of the myo-
genic motifs MRF, MEF2, SRF and Tead individually and also in
Boolean (AND, OR and NOT) combinations. In evaluating the
degree of enrichment for motifs within gene sets, we simultaneously
considered the AUC and Q value. For example, when we examined
the collection of all B500 upregulated genes (C0–C5; Fig. 2a) using
all four myogenic motifs, we observed only slight but significant
enrichment (AUC ¼ 0.57 ± 0.01, Qr 0.001; Fig. 2b). Thus, we can
be highly confident that targets of these four motifs exist within the
set of all upregulated genes, but finding specific target genes within
this set would be difficult. Conversely, when we examined the set of
all downregulated genes (C6–C13), we observed no enrichment at
all with the four-way OR combination of these four motifs (AUC ¼
0.50 ± 0.01, Q4 0.05; Fig. 2c). We observed strongest enrichment
for these four motifs among the most upregulated genes (C0; AUC
¼ 0.71 ± 0.05,Qr 0.001; Fig. 2d). Within C0, the MRF motif alone
showed slightly greater enrichment (AUC ¼ 0.72 ± 0.04,Qr 0.001;
Fig. 2e) than all four motifs together, indicating that most of the
enrichment from the four-way Boolean OR combination of motifs
was likely owing to the MRF motif.

We generally observed greatest enrichment of these four motifs
in upregulated expression clusters (Supplementary Fig. 5 and
Supplementary Table 3a online), with the notable exception of
C12 of downregulated genes, which contains many genes involved
in cell-cycle function (Supplementary Table 2). The enrichment
we observed here was consistent with an observation from another
group suggesting the existence of MRF targets involved in cell-cycle
progression and proliferation21. Results of additional Lever analysis
controls are available in Supplementary Results online. Results of
the Lever analysis of 101 myogenic gene sets using all four myogenic
motifs are available in Supplementary Figure 6 and Supplemen-
tary Table 3b online.

Lever screen of 174 motifs across 101 myogenic gene sets
To identify additional motifs that might be involved in the
regulation of myogenic gene sets, we performed a Lever analysis
of the 101 myogenic gene sets (Fig. 3a) using a dictionary of
174 candidate human regulatory motifs that were previously
computationally predicted from 4-kb proximal promoter regions9.
Out of these 17,574 GM pairs, we observed a total of 173 significant
(Q r 0.05) GM pairs, involving a total of 45 distinct motifs
and 61 distinct gene sets (Fig. 3b,c and Supplementary Table 3c).
These 45 motifs could be broadly classified into 3 categories: (i) 21
motifs enriched among only upregulated gene sets, (ii) 10 motifs
enriched among both upregulated and downregulated gene
sets and (iii) 14 motifs enriched among only downregulated gene
sets (Fig. 3b,c).
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Figure 2 | Analysis of the time course of human skeletal muscle

differentiation. (a) Expression clusters from gene expression profiling data for

human adult primary skeletal muscle cells at the indicated time points with

respect to stimulation of differentiation. Arcsinh values are relative to the

–48 h time point. Shown here are the genes that are differentially expressed

at a false discovery rate of 5%. (b–e) Evaluation of enrichment using as a

foreground sequence set the 75-kb regions surrounding transcription start

site for the indicated combinations of motifs for all genes in the indicated

clusters. Dashed lines are receiver operator characteristic curves for a

completely random ranking of genes into class 1 and class 0 and

corresponds to AUC ¼ 0.5.
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Several of the motifs that were part of significant GM pairs
resulting from this Lever analysis correspond to the DNA
binding site motifs of transcription factors known to function
during myogenesis, including AP-1 (ref. 22), Elk-1 (ref. 23) and
Pitx2 (ref. 24). This dictionary of candidate regulatory
motifs contained matches to the MRF, MEF2 and Tead motifs, all
of which were significantly enriched in various gene sets
(Supplementary Table 3). For example, all of the motifs that we
observed to be enriched within the sarcomeric gene set
corresponded to discretized versions of either the MRF, MEF2 or
Tead motifs.

In examining the results from this Lever analysis, we identified
some interesting connections between gene sets. For example,
the NF-Y motif was enriched among the upregulated lipid bio-
synthesis genes, the downregulated chromatin genes, various
downregulated organelle gene sets and several downregulated
gene sets involved in the cell cycle. Likewise, the downregulated
plasma membrane genes appeared to be co-regulated via the AP-1
motif with several gene sets including response to stress, cell
proliferation and regulation of cell proliferation, and the upregu-
lated plasma membrane genes appeared to be co-regulated via
the MEF2 motif with several upregulated gene sets involving
structural properties of muscle cells, including cytoskeletal protein
binding, contractile fiber, structural constituent of muscle and
actin cytoskeleton.

Certain motifs appeared to regulate a large cohort of gene
sets. For example, the NF-Y motif co-regulated many gene sets
involved in the cell cycle. The suppression of NF-Y function has
been shown previously to be important for the inhibition of several
cell-cycle genes and the induction of the early muscle-specific
program in post-mitotic muscle cells25. Similarly, the motif
TGAnTCA (annotated in ref. 9 as the AP-1 motif) co-regulates
several gene sets pertaining to cell proliferation and the plasma
membrane. AP-1 complexes previously have been shown to be
involved in the control of duration of myoblast proliferation and
fusion efficiency22.

Experimental validation of computationally predicted CRMs
We experimentally tested six CRMs predicted by PhylCRM (Sup-
plementary Fig. 7 online) and consisting of the MRF AND MEF2
motif combination (Fig. 4a). We sampled CRMs from various
genomic locations relative to transcriptional start site and with a
range of PhylCRM scores. Four of these six candidate CRMs
were adjacent to genes with known or predicted sarcomeric
function; two of these predicted CRMs (the predicted CRM next
to ACTA1 and the predicted CRM between PDLIM3 and SORBS2)
are more than 17 kb away from their predicted target transcripts.
Since Lever analysis identified significant enrichment (AUC ¼ 0.82
± 0.04, Qr 0.001) for the Boolean motif combination MRF AND
MEF2 in the set of sarcomeric genes (Supplementary Fig. 6),
choosing two of the six candidate CRMs to be adjacent to genes not
involved in sarcomeric function also allowed us to explore whether
CRMs containing this particular motif combination might func-
tion for non-sarcomeric genes.

The seven genes adjacent to these six predicted CRMs were
upregulated during differentiation (Supplementary Fig. 8 online),
and myogenic transcription factors were differentially expressed at
the protein level during differentiation (Supplementary Fig. 9
online). Chromatin immunoprecipitation (ChIP) assays followed
by region-specific quantitative PCR showed that 4/6 candidate
CRMs were significantly enriched for binding by MEF2 (Pr 0.05),
MyoD (Pr 0.05) and myogenin (Pr 0.005) (Fig. 4b). Notably, of
the six tested CRMs, the four that showed significant binding by
MEF2, MyoD and myogenin were the ones that are located next to
genes involved in sarcomeric function, whereas the two that did not
show significant binding by these factors are not. Although this
does not tell us what sequence features distinguish the active from
the inactive CRMs, it does suggest that the choice of the likely target
gene sets is important in predicting CRMs that are active in a given
condition (here, myogenic differentiation).

We performed luciferase assays for the four new, candidate
CRMs that were enriched for in vivo transcription factor binding.
For these candidate CRMs we observed significant (P r 0.05)

a b c
Time (h)

Motifs Motifs
10

1 
m

yo
ge

ni
c

ge
ne

 s
et

s

–4
8

–2
4 0 12 24 48

Arcsinh

Enriched in upregulated
gene sets

Enriched
in both

Enriched in
downregulated

gene sets
Enriched in upregulated

gene sets
Enriched
in both

Enriched in
downregulated

gene sets

2.5

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0

AUC

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

Q value

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3 | Lever screen of 101 myogenic gene sets using a dictionary of 174 motifs. (a) Median signal intensity throughout the timecourse of gene expression

profiling for each of 101 gene sets. (b) AUC scores for each GM pair when considering each of the 174 motifs from reference 9. (c) False discovery rate Q value

for each GM pair. In the heat maps in b and c, there were only the 45 motifs with significant enrichment (Q r 0.05) in at least one of the 101 myogenic gene

sets. The columns of matrices in b and c were sorted by decreasing overall correlation with gene expression at time +48 h. The rows of the heat maps in

a–c were sorted by decreasing median expression arcsinh values at time point +48 h (relative to –48 h).

350 | VOL.5 NO.4 | APRIL 2008 | NATURE METHODS

ARTICLES
©

20
08

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

em
et

h
o

d
s



activation of luciferase expression during myogenic differentiation,
but not in either fibroblasts or lens epithelial cells (Fig. 4c). ShRNA
knockdowns of MEF2D, MYOG or SRF (Supplementary Fig. 10
online) confirmed that these four candidate CRMs drive expression
specifically in response to myogenic differentiation (Supplemen-
tary Fig. 11 online). Results for a synthetic CRM suggest that there
are further sequence requirements aside from the MRF and
MEF2 motifs (Supplementary Fig. 12 online). A detailed
description of these experimental validations is available in Sup-
plementary Results.

Functional annotation of regulatory motifs
Identification of significant GM pairs involving GO categories
allowed us to assign to a regulatory motif the functional annotation
of the GO categories within which it showed significant enrich-
ment. For example, a discretized form of the MEF2 DNA binding
site motif was enriched among many GO categories related to
muscle contraction, including contractile fiber, muscle contraction
and actin cytoskeleton, consistent with recently published ChIP-
chip results21. Notably, Lever was able to identify these regulatory
associations using only sequence data and gene expression data. In
addition, although the published ChIP-chip study21 identified
surprisingly few MEF2, MyoD and myogenin targets as being
involved in cell-cycle progression, our Lever results not only agreed
with these findings, but also identified additional motifs, including
AP-1, that are likely to be involved in the downregulation of the cell
cycle during myogenesis. We missed several known regulatory
interactions because of the stringency of our statistical analyses,
primarily because of our need to correct for the many hypotheses

tested (over 17,500 GM pairs) in our large Lever analysis of
174 motifs across 101 gene sets (Supplementary Table 3).

We can also apply this annotation method to the 13 motifs
belonging to 30 significant GM pairs, for which the trans factors
that may bind them have not yet been discovered (Supplementary
Table 3). For example, we found that the putative regulatory motif
TGACATY can be annotated as being involved in the regulation of
plasma membrane genes. This level of functional annotation is
much more specific than just indicating the tissue specificity of the
genes upstream of which the motif is found9. We note that these
annotations indicate the functions of the motifs during myogenic
differentiation, and that the motifs may serve other functions in
other cell types or in response to other environmental stimuli.

DISCUSSION
Our approach went beyond recent efforts at metazoan CRM
identification by identifying motifs or motif combinations and
their target gene sets in an automated manner. The level of
functional annotation we achieved is an important step in moving
from a listing of candidate regulatory motifs toward a functional
understanding of the biological roles of such motifs. Our approach
also allows for de novo reconstruction of transcriptional regulatory
networks, without any prior knowledge of the functions of the
examined regulatory motifs. We anticipate that this method will
also be useful for the analysis of candidate regulatory motifs and
gene sets from other biological systems, including other metazoans.
Indeed, with motif dictionaries being derived either computation-
ally or experimentally by high-throughput methods for identifying
transcription factor DNA binding sites, the next major challenges
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are identification of CRMs that contain those motifs and mapping
those motifs and CRMs to the biological processes that they
regulate. Lever analyses could be performed using any gene sets
of interest. The utility of our computational framework will greatly
increase in the coming years as expanded genome-wide motif
dictionaries will be both predicted computationally11 and derived
experimentally13,16 using genome-scale techniques.

Here we chose an appropriate subset of species to consider in
scoring phylogenetic conservation, based on the evaluation of Lever
on a positive control set of myogenic CRMs. However, the choice of
the most suitable set of species to use will not always be determined
as readily, particularly in the absence of a positive control set of
CRMs. Future work on identifying the gene expression patterns of
orthologous transcription factors will provide useful data for
choosing the appropriate set of species to consider in evaluating
phylogenetic conservation of their corresponding DNA binding site
motifs. However, even with conservation of expression of the
orthologous transcription factors, the binding site composition
and locations of CRMs may still diverge rapidly26.

This method represents a major step in moving from a genome-
wide motif dictionary to understanding the language of cis regula-
tion. Although Lever analysis does not directly inform us what
sequence features in candidate CRMs distinguish the active from
the inactive CRMs, it does suggest that the choice of the likely target
gene sets is important in predicting CRMs that are active in a given
condition (here, myogenic differentiation). Improved computa-
tional methods and experimental testing of both native and
synthetic CRMs will be important for deciphering the ‘grammar’
of how regulatory motifs must be organized within sequence
windows to construct CRMs that are active in a given cellular
and environmental context.

METHODS
Genomic sequences used in this study. We obtained all genomic
sequences for scans used in this work from the University of
California Santa Cruz (UCSC) Genome Browser Hg17 assembly.
For alignments, we used all genomes and alignments available at
the time we began our study, corresponding to the ‘‘Multiple
alignments of 8 vertebrate genomes with Human,’’ along with
pairwise alignments for macaque, cow and opossum. For annota-
tion of gene coordinates, we used the UCSC ‘‘refGene’’ and
‘‘all_mrna’’ files. We repeat masked all sequences using the
RepeatMasking provided by UCSC. We also masked out all exonic
regions (exon coordinates were obtained from the refGene files).

We obtained a previously described27 collection of 27 muscle
CRMs containing matches to at least one of the MRF, MEF2, SRF
or Tead DNA binding site motifs (we note that our ‘‘Tead’’ motif is
the same as ‘‘Tef’’ motif in ref. 27). Genomic coordinates of
positive control CRMs, negative control regions and PhylCRM
predicted CRMs are available in Supplementary Table 4 online.

PhylCRM: a computational approach for finding CRMs by
quantifying motif clustering and evolutionary conservation.
Briefly, PhylCRM takes as input a set of pre-defined DNA motifs,
a set of aligned genomic sequences within which to search for
candidate CRMs comprising a particular group of motifs and a
tree indicating the phylogeny of the genomes. PhylCRM scans for
the presence of transcription factor binding site motifs using
sliding windows of continuously varying sizes, since CRMs span

a wide range of lengths. For each motif, it scans the aligned
sequences and quantifies the degree to which each position is a
phylogenetically conserved motif match, using the MONKEY
scoring model18 to evaluate the degree to which that position is
both a conserved and a high-affinity match to the transcription
factor binding site motif (Fig. 4a). Then, for each transcription
factor binding site motif and for each window within a user-
defined size range, it computes the summation of these motif
match scores and evaluates its statistical significance using an
empirically derived probability distribution of the window scores
to give a motif output score. This probability distribution
depends on the transcription factor binding site motif and on
the window size and is generated by inspecting all of the genomic
sequences (here, 50-kb upstream and 25-kb downstream of
transcription start site) with a sliding window of fixed size
(Supplementary Methods online). The motif output scores from
all of the motifs are combined into one output score. This output
score is computed differently depending on the Boolean motif
combination that is considered. This score simultaneously reflects
motif over-representation and evolutionary conservation when
scoring entire windows of sequence containing multiple transcrip-
tion factor binding site motifs. Because PhylCRM provides a
continuous (non-binary) measure of motif enrichment within
a flanking region, we sought a similarly continuous set of logical
AND, OR and NOT logical operations when combining several
motifs. Therefore we used concepts from Fuzzy logic28, where
statements have a gradual assessment of being either ‘true’
or ‘false’. A complete description of the PhylCRM scoring scheme
is available in Supplementary Methods and Supplementary
Figures 1–3.

Lever. The statistical framework of Lever is based on principles
used by other groups for gene-set enrichment analysis29 and uses
permutation-based adjustment for multiple hypothesis testing.
However, in contrast to gene-set enrichment analysis, in the Lever
framework genes are ranked by a sequence-based, rather than an
expression-based, scoring function, and each combination of
motifs gives rise to a distinct scoring function. For each gene set
and scoring function, the ranking power of the function is
statistically assessed by calculating the enrichment for highly
scoring genes within the gene set. Thus, Lever simultaneously
calculates and assesses the enrichment for many gene sets across
many motif combinations (that is, GM pairs).

Noncoding foreground and background sequence regions
examined by Lever. For each gene in each of these foreground
gene sets, we obtained 75 kb of genomic sequence overlapping the
transcription start site. As a background set, we obtained a
collection of non-overlapping, 75-kb genomic sequences for genes
that were observed to be ‘present’ in the expression microarray
data but not up- or downregulated at a false discovery rate of
less than 0.1. For each foreground gene set we selected a
length-matched background set17 to remove the possibility that
any observed enrichment for high-scoring candidate CRMs could
be solely due to a larger search space. For each foreground gene set,
a background gene set was automatically built that is as large as
possible (usually 10–40 times as large as the foreground) so that
the overall distribution of lengths in the foreground and back-
ground sets is well matched (Supplementary Methods).
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Statistical analyses in data processing. We determined over-
representation of GO annotation terms in various gene sets using
FuncAssociate, a web-based program that corrects for multiple
hypothesis testing30. Significant changes in luciferase reporter
array and ChIP data were determined by Student’s unpaired
two-tailed t-tests.

Additional methods. Detailed descriptions of the construction of
length-matched background sets against which foreground gene
sets were evaluated in Lever; description of PhylCRM scoring
scheme; evaluation of ability of PhylCRM to identify CRMs;
comparison of PhylCRM to other CRM prediction methods;
Lever; further discussion of interpretation of CRM enrichment
results from Lever; position weight matrices used in this study;
and details of all experimental protocols, including primer
sequences, are available in Supplementary Methods.

Accession numbers. Gene Expression Omnibus (GEO): GSE4460.

Software. Software and manuals for PhylCRM and Lever are avail-
able at our laboratory website (http://the_brain.bwh.harvard.edu/).

Note: Supplementary information is available on the Nature Methods website.
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