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A. Cloning of S. cerevisiae TFs as full-length and DNA-binding domain constructs  

 

We compiled a list of 303 known and predicted yeast TFs. We considered only those genes 

present in the sequenced strain S288C (Goffeau et al. 1996), which is a MATalpha, not MATa 

strain. These 303 ORFs were identified as candidate TFs based on at least one of the following 

three criteria: (1) annotated in Gene Ontology (Ashburner et al. 2000; Consortium 2001; Harris 

et al. 2004) as “DNA-binding” and one of “Transcription Factor”, “Transcriptional Activator”, or 

“Transcriptional Repressor” in the Yeast Proteome Database (YPD) (Costanzo et al. 2000); (2) 

annotated as “Transcription Factor” in the Munich Information for Protein Sequences (MIPS) 

Database (Mewes et al. 2002); (3) selected for ChIP-chip in a prior global study (Harbison et al. 

2004). TFs classified as being of “unknown function” include 21 “uncharacterized ORFs” plus 

an additional 8 that are “verified ORFs” yet are annotated in SGD as “protein of unknown 

function”. This list is accurate as of January 2008 annotations in YPD and MIPS. All ORFs not 

classified as “unknown function” were classified as "characterized". These include all "verified 

ORFs" that had some described function in SGD other than "protein of unknown function", and 

so here “characterized” is a quite loose definition. Note that 19 of our proteins were ‘long shots’, 

in that their annotated domains had no evidence for sequence-specific DNA binding; the 

domains of such proteins include: PHD (9), Zf_CCCH (2), bromodomain (4), SIR2 (2) and 

SNF2_N (2). 

 

In addition, we also added in the following ORFs for the following reasons: (1) SPT15, the 

TATA-binding protein (component of TFIID) in S. cerevisiae; (2) TBF1 (TTAGGG repeat-

Binding Factor) (Brigati et al. 1993; Liu and Tye 1991), which is a known sequence-specific 

DNA binding protein; and (3) two homologous genes, RSC3 and RSC30, which are paralogous 

genes that contain Zn2Cys6 DNA binding domains and encode components of the RSC 

chromatin remodeling complex. Rsc3 and RSC30 were of interest to us because they have been 

proposed to bind DNA and recruit RSC to specific loci (Angus-Hill et al. 2001). 

 

We cloned these 245 full-length ORFs and 99 DBDs into Gateway-compatible Entry and 

Destination vectors, pDONR201 or pDONR221, and pDEST-GST (Braun et al. 2002), as 

described previously (Hu et al. 2007). A separate, partially redundant set of 118 DBDs were a 
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generous gift from Tim Hughes of U. Toronto and Jason Lieb of U. North Carolina. Thus, our 

final clone collection includes 245 ORFs as full-length constructs, and 208 as DBDs. We were 

not able to get either FL or DBD clones for 22 of the ORFs in our list. The missing full-length 

ORFs have been for the most part lengthy or otherwise difficult to clone. With regard to the 

DBD collection, a number of the ORFs do not have identifiable DNA binding domains. We did 

not pursue cloning of DBDs if the Pfam-annotated DBDs spanned >80% of the full-length 

protein, or in some cases, if careful manual inspection indicated that these were not likely DBDs 

based on their descriptions (e.g. bromodomain). 

 

 

B. High-Throughput Expression and Purification of GST-Tagged Yeast TFs  

 

For all 245 full-length TF and 208 DBD clones, we performed high-throughput over-expression 

in E. coli cultures and subsequent affinity purification using glutathione resin in 96-well plates 

essentially as described previously (Hu et al. 2007). In this study, the high-throughput over-

expression in 1.2-ml 96-well plates was done robotically, while the high-throughput purification 

was done in 96-well plates using a multichannel pipettor. 

 

 

C. PBMs on TFs Purified in High-Throughput Manner from E. coli 

 

Our PBMs on yeast TFs overexpressed in and purified from E. coli in high-throughput indicated 

that these proteins can yield DNA binding site motifs (Hu et al. 2007). In this present study, all 

the proteins were overexpressed robotically but manually purified in 96-well plates.  

 

 

D. Western blots 

 

We expressed and purified in high-throughput 245 TFs as full-length TFs fused to GST. For each 

purified protein we performed Western blots to assess quality and to approximate its 
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concentration, as described previously (Hu et al. 2007). Briefly, proteins were analyzed on 

precast 4%–12% XT Criterion gradient gels (BioRad) according to the manufacturer’s protocols. 

Immunoblots were probed with rabbit anti-GST antibody (Sigma) at 20 ng/ml final concentration 

and developed using SuperSignal West Femto Maximum Sensitivity Substrate (Pierce) according 

to the manufacturer’s protocols. Western blot analysis indicated that 57% (140/245) of these 

expression cultures yielded at least 10 pmol of the desired protein, which is sufficient for one 

PBM experiment in 8x15K array format plus duplicate PBM experiments in 4x44K array format 

at a minimum concentration of 25 nM TF in the PBM experiment, from single 1.2-ml wells of 

high-throughput (96-well) E. coli cultures. 208 DBD GST-fusion clones underwent high-

throughput expression and purification at HIP, of which 185 DBDs (89%) were acceptable by 

Western blots. Examples of Westerns of purified full-length TFs are shown in Fig. 3 of our 

previous Genome Research paper (Hu et al. 2007). Overall this resulted in 246 TFs for which we 

have acceptable protein as either full-length or DBD or both.  We were not able to get sufficient 

amounts of acceptable protein, as judged by both size and concentration, as either the full-length 

or DBD version, for the remaining 43 constructs, corresponding to 35 nonredundant TFs.  

 

 

E. Protein Binding Microarrays (PBMs) 

 

Briefly, our maximally compact, synthetic DNA sequence design (Berger et al. 2006; Philippakis 

et al. 2008) for PBMs represents all possible DNA sequence variants of a given length k (i.e., all 

“k-mers”) on a single microarray. We constructed microarrays covering all 10 bp binding sites 

by converting high-density single-stranded oligonucleotide arrays to double-stranded DNA 

arrays (Berger et al. 2006). Importantly, our universal arrays are designed to evenly sample the 

space of higher order k-mers (Berger et al. 2006; Philippakis et al. 2008), which allows us to 

generate longer motifs (Berger et al. 2006). Moreover, our universal array designs employed in 

this present study were designed to cover various k-mers consisting of half-sites with long 

spacers (i.e., “Gal4-type” motifs).  

 

To design the sequence for our ‘all 10-mer’ universal protein binding microarrays (PBMs), we 

utilized de Bruijn sequences of order 10 (Berger et al. 2008; Berger et al. 2006; Philippakis et al. 
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2008). A de Bruijn sequence of order k is a circular string of length 4
k
 that contains every k-mer 

exactly once when overlaps are considered. We created two separate designs for replicate 

experiments, which we optimized to achieve maximal coverage of gapped k-mers (described 

below).  To generate de Bruijn sequences of order 10 for our universal PBMs, we used a linear-

feedback shift register corresponding to the primitive polynomial: 
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For longer motifs containing nine or more positions with an information content (Schneider et al. 

1986) of 0.3 or greater in the PWM constructed from the PBM data using Seed-and-Wobble 

(Berger and Bulyk; Berger et al. 2006), influences of flanking sequence, position, and orientation 

were minimized by performing a replicate PBM experiment on a separate microarray containing 

a second de Bruijn sequence (Berger et al. 2006; Philippakis et al. 2008). The two de Bruijn 

sequences for our two PBMs differ by cyclic permutations of A, C, G, and T.  We empirically 

selected these particular de Bruijn sequences because they uniformly cover all contiguous 10-

mers and all gapped 10-mers spanning 11 total positions.  Further, they exhibit optimal coverage 

of contiguous and gapped 8-mers.  Any 8-mer is guaranteed to occur 16 times in a de Bruijn 

sequence of order 10 (32 times for non-palindromes).  Our de Bruijn sequences exhibit this 

redundancy for all gapped 8-mers spanning up to 12 total positions (except for sequence variants 

of the single pattern 1111-1-1--11), as well as all gapped 8-mers of the pattern 1111-gap-1111 

with a gap of up to 20 positions.  Thus, all 4
8
 sequence variants for each of these 357 patterns 

(nearly 23.4 million 8-mers) occur at least 16 times each. 

 

After generating these de Bruijn sequences in silico, we partitioned them into subsequences of 

length 36 nucleotides (nt) and overlapping by 11 nt, resulting in 41,944 36-mers for each 

microarray.  Any 36-mer with a run of five or more consecutive guanines was replaced by its 

reverse complement to avoid problems in primer extension for double-stranding.  We appended a 

common 24-nt sequence to each 3’ end complementary to our primer in order to create 60-mer 

sequences that would become the probes on our custom-designed microarrays.  These 

microarrays were synthesized by Agilent technologies in their “4x44K” format.  Each slide 

contains all possible 10-mers in approximately 44,000 probes, repeated in four identical subgrids 

that can be physically separated into four chambers for four separate experiments.  The 
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additional probes beyond this set of 41,944 were designated as control sequences for a variety of 

purposes.   

 

In order to efficiently test all proteins in our collection, we first performed an initial survey that 

utilized eight-chambered arrays in Agilent’s “8x15K” format.  We created a novel microarray 

design for these experiments consisting of one de Bruijn sequence of order 9 and one de Bruijn 

sequence of order 8 in approximately 15,000 total spots.  Consequently, each subgrid contains 

every 9-mer at least twice (when reverse complements are considered), every non-palindromic 8-

mer at least 10 times, and every 7-mer at least 40 times.  As before, we specifically chose de 

Bruijn sequences that enabled us to efficiently capture gapped k-mers, including the “Gal4-type” 

motifs consisting of half-sites with long spacers. 

 

To generate the de Bruijn sequence of order 9, we used a linear-feedback shift register 

corresponding to the primitive polynomial: 
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We selected this de Bruijn sequence because it uniformly covers all contiguous 9-mers and a 

large fraction of all 9-mers spanning up to 12 total positions.  Additionally, it provides equal 

coverage of all 7-mers spanning up to 12 total positions with a single exception (corresponding 

to the pattern 1-111---111).  We partitioned this de Bruijn sequence into 36-mer subsequences 

overlapping by 12 nucleotides to form the spots on the microarray. 

 

To generate the de Bruijn sequence of order 8, we used a linear-feedback shift register 

corresponding to the primitive polynomial: 

3x
8
+1x

7
+1x

6
+1x

5
+1x

4
+2x

3
+3x

2
+2x 

This de Bruijn sequence uniformly covers all contiguous 8-mers, all 8-mers spanning 9 total 

positions, and all gapped 8-mers of the pattern 1111-gap-1111 with gaps up to 10 positions.  It 

also provides equal coverage of all 7-mers spanning up to 11 total positions with four exceptions 

(all separate from the pattern missed above).  We partitioned this de Bruijn sequence into 36-mer 

subsequences overlapping by 15 nucleotides to form the spots on the microarray. 

 

All GST-TF fusion proteins that were deemed acceptable by Western blot (i.e., sufficient amount 
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of protein of the appropriate size) were first tested on new or stripped and re-used 8x15K arrays, 

allowing us to test TFs both rapidly and at lower cost. If a TF was represented by both a full-

length and also a DBD construct, we tested both in separate PBMs. If a protein resulted in a 

candidate motif whose seed k-mer either had an enrichment score of at least 0.45 or was a non-

G-run k-mer with an enrichment score of at least 0.35 from the 8x15K test array PBM data, we 

subsequently examined it in the 4x44K array format. For 7 proteins, the observed PBM binding 

profiles were clearly due to contamination from an adjacent well on the 96-well protein prep 

plate, and so those data were eliminated from further analysis. 

 

 

F. Identification of DNA binding site motifs using Seed-and-Wobble 

 

PBM k-mer scores: 

 

As described previously (Berger and Bulyk 2006), every non-palindromic 8-mer occurs on at 

least 32 spots in each chamber of our universal PBM.  Because of this redundancy, we are able to 

provide a robust estimate of the relative preference of a transcription factor for every contiguous 

and gapped 8-mer that is covered on our array.  Here, for each 8-mer, we provide the median 

normalized signal intensity and a rank-based statistical enrichment score.  Median normalized 

signal intensity refers to the median normalized signal intensity for the set of probes containing a 

match to each 8-mer (usually ~32 probes, but some might be flagged occasionally because of 

dust flecks, etc., and therefore removed from further consideration).  We have shown previously 

that higher PBM median signal intensity corresponds to stronger protein-DNA binding affinity 

(Berger and Bulyk 2006); however, experimental variability and differences in absolute signal 

intensities and nonspecific binding can make this measure difficult to compare for different TFs. 

 

Our enrichment score is a rank-based, non-parametric statistical measure that is invariant to 

protein concentration and readily allows different experiments to be compared on the same scale.  

This enrichment score has been described previously in detail (Berger and Bulyk 2006).  Briefly, 

for each 8-mer (contiguous or gapped) we consider the collection of all probes containing a 

match as the “foreground” feature set and the remaining probes as the “background” feature set.  
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We compare the ranks of the top half of the foreground with the ranks of the top half of the 

background by computing a modified form of the Wilcoxon-Mann-Whitney (WMW) statistic 

scaled to be invariant of foreground and background sample sizes. The enrichment score ranges 

from +0.5 (most favored) to -0.5 (most disfavored).  As described previously (Berger and Bulyk 

2006), in order to combine the data from duplicate experiments for a TF using microarrays 

created with independent sequence designs, we computed enrichment scores for all 8-mers for 

each separate experiment and then calculated the mean enrichment score for each 8-mer directly. 

 

Motif construction using Seed-and-Wobble:  

 

In addition to reporting scores for each individual 8-mer for each TF, we compactly represent 

these binding data as position weight matrices (PWMs). Our “Seed-and-Wobble” algorithm for 

deriving motifs from universal array PBM data has been described previously (Berger and 

Bulyk; Berger et al. 2006).  Briefly, the algorithm works in two stages.  In the first stage (the 

“Seed” stage), we identify the single 8-mer (ungapped or gapped) with the greatest enrichment 

score.  For this study, we considered all 8-mers spanning up to 10 total positions, as well as all 8-

mers of the pattern 1111-gap-1111 with gaps up to 12 positions, as candidate seeds.  In the 

second stage (the “Wobble” stage), we systematically test the relative preference of each 

nucleotide variant at each position, both within and outside the seed.  This is accomplished by 

examining each of the four nucleotides at each position within the 8-mer seed (keeping the other 

7 positions fixed) and computing the modified WMW statistic using the entire set of probes 

containing one of the four variants.  For positions outside the 8-mer seed, we first identify the 

single position within the seed with the lowest information content, treat it as a gapped position, 

and query every other position for which the resulting 8-mer is covered in our de Bruijn 

sequence (i.e., all 4
8
 sequence variants of that pattern exhibit 32-fold redundancy).  Finally, we 

transform the motif derived from this method into a PWM using a Boltzmann distribution 

(Workman et al. 2005).  In order to derive a single motif combined from separate experiments, 

we choose the 8-mer with the greatest average enrichment score as a seed, use it to build a PWM 

on each separate array, and average the matrix elements, as described previously (Berger et al. 

2006). 
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G. Comparison of PBM motifs 

 

We used CompareACE to compare our 89 PBM-derived motifs against a list of 4,282 PWMs for 

previously published motifs, including both known TF binding site motifs and purely in silico 

derived candidate regulatory motifs, that we compiled from the literature (Beer and Tavazoie 

2004; Cliften et al. 2003; Harbison et al. 2004; Hughes et al. 2000; Kellis et al. 2003; Lee et al. 

2002; MacIsaac et al. 2006; Morozov and Siggia 2007; Mukherjee et al. 2004; Narlikar et al. 

2006; Sudarsanam et al. 2002; Tavazoie et al. 1999; Workman et al. 2006). We required a 

minimum CompareACE motif similarity score of 0.7 to consider motifs as matching. 

 

 

H.  Scoring of potential target genes 

 

The PBM k-mer data were used to score potential target genes in yeast.  A predicted total 

occupancy score for a given TF was calculated for the upstream promoter region of each gene by 

summing the background-subtracted median PBM signal intensities for each overlapping 8-mer, 

considering all those 8-mers with a PBM enrichment score of at least 0.35, over the sequence up 

to 600 bp upstream of translation start. (If a verified ORF overlapped with this 600 bp upstream 

sequence, the sequence to score was truncated at the beginning of this nearby ORF)  In this 

summation, we used the median intensities calculated for all sequence variants of the 8-mer 

pattern that produced the highest overall enrichment score, considering both contiguous 8-mers 

as well as 8-mers spanning up to 10 total positions, or 8-mers of the pattern 1111-gap-1111 with 

gaps up to 12 positions. The median value of the median intensities over all 8-mers was used as a 

measure of the background signal and was subtracted from each individual 8-mer's intensity 

before summation.  For TFs with duplicate PBM data, the ranks of the genes resulting from 

median intensity summing from each individual array were averaged to produce the final gene 

rankings for subsequent analysis. 
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I. Analysis of ChIP-chip data 

 

To determine how well our in vitro PBM data agree with in vivo binding data for the TFs, we 

analyzed the PBM-derived scores for ChIP-chip derived target intergenic regions (IGRs) of each 

TF. All yeast IGRs were scored using PBM 8-mer data as described above for each TF, except 

that in this case the entire IGR length was scored, rather than only 600 bp upstream of translation 

start.  This enables a direct comparison between scores derived from PBM data and those 

measured from ChIP-chip experiments, in which the entire IGR (~100-1500 bp in length) was 

included on the array.  Target IGR sets for each TF were defined as IGRs bound by the TF in a 

ChIP-chip experiment at p<0.001 in any experimental condition as reported by the authors of 

that study (Harbison et al. 2004). In cases where the results from multiple experimental 

conditions were combined, the ChIP-chip p-values were Bonferroni-corrected for multiple 

hypothesis testing before the target gene set was chosen. TFs were excluded from the analysis if 

fewer than 10 IGRs were bound at p<0.001 in the ChIP-chip data. An area under the receiver 

operating characteristic (ROC)  curve (AUC statistic) was then calculated by comparing the 

PBM-derived ranks of IGRs within the ChIP-chip ‘bound’ IGRs (foreground set, or "class 1") to 

the ranks of the rest of the yeast IGRs (background set, or "class 0").  For comparison, ChIP-

chip-derived motifs, if available, were used to rank the IGRs as well.  ScanACE (Hughes et al. 

2000; Roth et al. 1998) was used to score ChIP-chip motif matches in all yeast IGRs at a 

threshold of 2 SD below the mean motif score.  If multiple matches occurred within an IGR, 

these scores were summed to obtain a final score for each IGR.  The resulting ChIP-chip IGR 

ranking was then used to calculate an AUC statistic comparing the ChIP-chip derived ranks for 

ChIP-chip target IGRs versus background IGRs. P-values measuring the significance of each 

AUC statistic were calculated using the mean and standard deviation of a distribution of AUC 

scores derived using 1,000 random permutations of the foreground/background assignments for 

each set of IGR scores. This p-value is sensitive to sample size (i.e., to the size of the foreground 

and background sets), whereas the AUC is much more robust to sample size (measures what can 

be thought of as ‘effect size’ while p-value measures ‘statistical significance’).  Therefore, we 

use the AUC to compare datasets and the p-value to draw a cutoff on statistical significance.  We 

consider AUC scores with p<0.05 as significant enrichment of likely PBM-predicted target genes 

within the ChIP-chip binding data.  We noted any cases in which PBM-derived ranks better 
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explained the ChIP-chip target IGRs (higher AUC) than did the ChIP-chip motif ranks.  For three 

TFs (Aro80, Stp4, and Yox1), fewer than 100 IGRs contained any ScanACE matches to the 

ChIP-chip derived motif and thus there were not enough uniquely ranked values to allow a 

reliable p-value estimation by the permutation-based method.  All other p-values are reported in 

Fig. S6.     

 

Disagreements between the ChIP-chip p-values and PBM scores may have a variety of 

explanations.  In addition to the potential differences discussed in the main body of the paper, the 

ChIP-chip data may suffer from false positive signals due to cross-hybridization.  The long 

intergenic region fragments present on the array increase the probability that the short sheared 

DNA fragments immunoprecipitated by the ChIP antibody may recognize regions within array 

fragments other than their appropriate target sequence.  

 

To determine which ChIP-chip bound regions would be classified as “direct” versus “indirect” 

binding sites according to our PBM k-mer data, we required a scoring method that would provide 

discrete groups of target intergenic regions instead of the continuous ranking of regions 

accomplished by the methods described above.  Thus, we searched for high scoring k-mers 

within IGRs, using E score > 0.45 as a consistent threshold between TF datasets.  We counted 

any IGR bound by a certain TF in ChIP-chip that contained at least one k-mer for that TF with an 

E score > 0.45 as a likely “direct” target of that TF, while ChIP-chip bound IGRs without k-mers 

surpassing this threshold were considered likely “indirect” targets. In Fig. S7, we also report the 

numbers of direct and indirect binding targets according to permissive versus conservative 

thresholds. We did not require cross-species conservation for either our k-mer matches or for the 

sites identified by MacIsaac et al., since a recent ChIP-chip study provided evidence that many 

functionally orthologous TF binding sites may not be aligned in genome sequence alignments 

(Borneman et al. 2007).   

 

 

J. Analysis of functional category enrichment among a TF’s predicted target genes 

 

We calculated the predicted total occupancy score at the promoter of a yeast gene for a given TF 
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using the median intensity 8-mer summation method described above.  We then considered the 

top 200 scoring genes for analysis of functional category enrichment among a TF’s predicted 

target genes using the tool FunSpec (Robinson et al. 2002). We report results obtained at 2 

different p-value significance thresholds as calculated by FunSpec, including p<0.005 without 

Bonferroni correction and p<0.05 with Bonferroni correction. In general, the top 200 genes gave 

much more informative results than 100 in the positive control TFs of known function, and so we 

used the top 200 genes for all the TFs. 

 

 

K. Prediction of condition-specificity using CRACR 

 

We utilized our CRACR (Combination Rank-order Analysis of Condition-specific Regulation; 

pronounced “cracker”) algorithm for prediction of the condition-specific functions of S. 

cerevisiae TFs (TFs) by integrating many (currently 1,693) microarray gene expression data sets 

and TF binding data from PBMs essentially as described previously (McCord et al. 2007). 

 

Briefly, CRACR searches for conditions in which genes downstream of intergenic regions 

(IGRs) exhibiting significant TF binding in PBMs are enriched among differentially expressed 

genes.  Each gene in the yeast genome is first ranked by the predicted total occupancy of the 

sequence up to 600 bp upstream of its translational start site by a TF as calculated from PBM 

data using 8-mer median intensity summations as described above. We then order all yeast genes 

according to their expression in a single condition and use a mean-centered area under a receiver 

operating characteristic (ROC) curve (AUC) statistical test to compare the PBM-defined ranks of 

similarly expressed genes within a sliding foreground window to the ranks of a background set 

of genes outside this window. This “area statistic” (McCord et al. 2007) indicates whether the 

similarly expressed genes within each window are enriched (positive area) or depleted (negative 

area) for likely TF targets. The statistical significance of the maximum enrichment in an 

expression condition is determined by permutation testing. In addition to discovering individual 

conditions in which a TF is likely to be regulating its target genes, each individual expression 

dataset is annotated with terms describing the biological functions affected by the given 

experimental condition (i.e., “heat shock response” or “sporulation”) to facilitate a search for the 
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general biological functions of a particular TF (Marion et al. 2004), FuncAssociate (Berriz et al. 

2003) is used to calculate the enrichment of these “condition annotation terms” within a set of 

conditions significant for a TF using a file describing the associations between annotation terms 

and conditions analogous to an association file between genes and GO terms, allowing the 

calculation of an annotation enrichment p-value adjusted for multiple hypothesis testing and 

accounting for the degree of significance of each condition as measured by its maximum area 

statistic.  

 

 

L. Prediction of transcriptional co-regulation by TFs 

 

Using the TFs Pbf1, Pbf2, and Stb3, which clustered together in the CRACR clustergram, 

consistent with their PAC and RRPE binding site motifs co-regulating rRNA processing and 

transcription target genes (Hughes et al. 2000), as a guide in setting a conservative CRACR 

similarity threshold, we considered all TF clusters with equal or greater CRACR similarity as 

that of the Pbf1/Pbf2/Stb3 cluster, as groups of putative co-regulatory TFs.   

 

 

M. EMSAs 

 

EMSA DNA Probe Design: 

 

Based on DNA binding specificities derived from PBMs, a 60-nt EMSA probe was designed 

such that the 5’ 40 nt sequence corresponds to a putative target intergenic region in the yeast 

genome and contains the predicted DNA binding site, and the next 20 nt corresponds to a 

common priming sequence at the 3’ end that can anneal to a universal biotinylated primer. The 

negative probes were designed such that their sequences either don’t contain the putative target 

site or contain a mutated version of the target site. Specific probe sequences used in EMSAs 

were as follows: 

 

Probes for Yer130c EMSAs: 
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Positive probe iYOR259C:    

5' – CACCGTTGATAGCTCCCCCCCCTATTGTCGTAGTCATGTCGAAAGGATGGGTGCGACGCG - 3' 

 

Positive probe iYGL158W:    

5' – GATTTTCCGCGGTTCCGACCCCTATCCTAGAAACACGGAAGAAAGGATGGGTGCGACGCG - 3' 

 

Positive probe itT(UGU)G2:  

5' – CCACGGAGGTTATCTTCACCCCTATTTTCATTTTAAATTTGAAAGGATGGGTGCGACGCG - 3' 

 

Negative probe iYGR145W:   

5' – AGGTTTTTTTTTTTTAGGATGACTAGAAAAGGAAATCGAAGAAAGGATGGGTGCGACGCG - 3' 

 

Universal biotinylated primer: 

5' – Biotin-CGCGTCGCACCCATCCTTTC - 3' 

 

 

Probes for Pbf1 and Pbf2 EMSAs:  

 

Positive probe iYKL144C:    

5’ – CAAATAAAAATTTTAAGCGATGAGCATCGCCTGAATATTACTGATTGCGGCGACCCATGG - 3’ 

 

Negative probe iYKL144CmP:  

5’ – CAAATAAAAATTTTAAGCCATCACCATCGCCTGAATATTACTGATTGCGGCGACCCATGG - 3’ 

 

Universal biotinylated primer: 

5’ – Biotin-CCATGGGTCGCCGCAATCAG - 3’ 

 

In the above probe sequences, the predicted binding sites are indicated by underlining and the 

common 3’ primer sequence is indicated by italics. 

 

 

Primer extensions to create double-stranded DNA EMSA Probes:  

 

Lyophilized oligonucleotides (Integrated DNA Technologies, Inc.) were resuspended in TE pH 

8.0 to a working stock of 100 µM.  Primer extensions reactions were performed in 1x Thermopol 
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Buffer (NEB, 20 mM Tris-HCl, 10 mM (NH4)2SO4,10 mM KCl, 2 mM MgSO4, 0.1 % Triton X-

100 ) using final concentrations of 0.8 mM dNTPs (Amersham), 4 µM 20-nt common primer, 

and 4 µM 60-nt template oligonucleotide in a 25 µL reaction. Primer extensions were performed 

in a thermocycler using the following protocol: 

 

1)  95° C for 3 minutes 

2)  Ramp down to 60° C (0.1° C per second) 

3)  Hold at 60° C 

 

At Step 3, 8 units of Bst Polymerase Large Fragment (NEB) in 1x Thermopol buffer were added 

to each reaction as a “hot start”.  After polymerase was added, the reaction was allowed to 

continue to Steps 4 and 5: 

 

4)  Incubate at 60° C for 90 minutes 

5)  Hold at 3° C 

 

The 60-bp double-stranded EMSA probes were filtered using MinElute PCR Purification Kit 

(Qiagen) according to the manufacturer’s instructions, and diluted to a working concentration of 

10 nM after concentrations were determined using a UV spectrophotometer.   

 

 

EMSA experiments: 

 

EMSAs were performed using the LightShift© Chemiluminescent EMSA Kit (Pierce), 

essentially according to the manufacturer’s protocols. Briefly, each 20 µl binding reaction 

contained 1x Binding Buffer (10 mM Tris, 50 mM KCl, 1 mM DTT), 2.5% glycerol, 0.5 µg 

Salmon Testes DNA (Sigma), 10 mM KCl, 4 µg BSA (NEB), 0.05 % NP-40, and 50 µM zinc 

acetate (for use in Yer130c EMSA, since Yer130c is a ZnF-C2H2 protein, but not in Pbf1 and 

Pbf2 EMSAs, since Pbf1 and Pbf2 are not zinc finger proteins). Approximately 5 nM DNA 

probe and approximately 0.2 µM protein were used in each reaction.  The binding reactions were 

allowed to incubate at room temperature for 1 hour.  A precast 6% polyacrylamide DNA 
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retardation gel (Invitrogen) was pre-run for 30 minutes at 100 V, and then 5 µl of 5x loading 

buffer was added to the binding reaction, and subsequently 20 µl of the reaction was run on the 

gel at 100 V for 45 minutes.   The gel was then transferred to a charge-modified 0.45 µm nylon 

membrane (Sigma) for 1.5 hours at 100 V, and subsequently UV-crosslinked to the membrane at 

120 µJ/cm
2
.  The membrane was then treated with developing buffers (Lightshift Blocking 

Buffer with stabilized Streptavidin-Horse Radish Peroxidase conjugate, Wash Buffer, Substrate 

Equilibration Buffer, Luminol/Enhancer Solution and Peroxide Solution) according to 

manufacturer’s protocol, then exposed to X-ray film and developed.     

 

 

N. Yeast strains and growth conditions 

 

All yeast strains were isogenic with BY4741. BY4741, ∆PBF1 and ∆PBF2 were purchased from 

Open Biosystems. The ∆PBF1∆PBF2 double deletion mutant was generated by replacing PBF2 

with URA3 using standard homologous recombination protocol in the ∆PBF1 background 

(Baudin et al. 1993). PCR primer sequences used for PBF2 deletions are 5'-

CCGTGCACGTTCCAGTCTTCCCTCCCTTCTCTGCTCCGTGAGATTGTACTGAGAGTGC

AC-3' and 5'- 

TTTTTTTATTTTTATTTTTTTTTCATTTTAAGTTTTCCCCCTGTGCGGTATTTCACACCG

-3'.  

 

We used the PCR epitope-tagging procedure (Schneider et al. 1995) to generate yeast strains 

with a 3xHA (hemagglutinin) N-terminal epitope tag using plasmid pMPY-3xHA (Schneider et 

al. 1995).  PCR primer sequences for Pbf1-3xHA are: (Forward: 5' -

AAGAATATATCACTGTTCTTATTGAAGTTCCCTCGCGATGACTAGGGAACAAAAGCT

GGA- 3' 

and Reverse: 5' -

TAACATGTCCTGATGAAACAGAAACGCTACTGAGTTTCGGCAACTGTAGGGCGAATT

GGG- 3') and for Pbf2-3xHA are: (Forward: 5' -

TGCACGTTCCAGTCTTCCCTCCCTTCTCTGCTCCGTGATGTCCAGGGAACAAAAGCT

GGA- 3' 
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and Reverse: 5' -

TGCTGCTCAAATGAATGGAAGCTGAGTTCAAACTGGTTGAAATCTGTAGGGCGAATT

GGG- 3'). The URA3 marker was further looped out using 5-fluoro-orotate selective media. All 

yeast were grown in standard yeast YPD medium as described (Sherman 2002) if not otherwise 

specified. 

 

 

O. Chromatin immunoprecipitation (ChIP) and quantitative real-time PCR (ChIP-qPCR) 

 

We carried out chromatin immunoprecipitation as described previously (Aparicio et al. 2005) 

with minor modifications. An overnight culture from a single colony of Pbf1 or Pbf2 HA-tagged 

strains was diluted into fresh medium and grown to OD600 between 0.3 and 0.4. Three 

independent cultures were grown in parallel in order to carry out triplicate biological replicates 

for ChIP assays. Cells were then subjected to heat shock treatment, i.e., growth temperature 

shifted from 25°C to 37°C, for 5 min, and then they were fixed with 1% formaldehyde for 20 

min, and then quenched by ~1.5 M glycine for 5 min. Cells were then washed and resuspended 

in FA lysis buffer / 2 mM PMSF (50 mM HEPES, pH7.5, 150 mM NaCl, 1 mM EDTA, 1% 

Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS) and lysed with zirconia-silica beads 

(Biospec Products) by vortexing at 4°C for 90 min. Chromatin was pelleted by centrifugation 

and solubilized by sonication. Soluble chromatin was then immunoprecipitated using 

monoclonal anti(HA-tag) antibody (12CA5, Santa Cruz Biotechnology) at 4°C overnight with 

rotation. Protein A Sepharose beads (GE Healthcare) were added to the sample and incubated for 

one additional hour at 4°C. Chromatin was then washed and recovered. Peptides and remaining 

proteins were digested with Pronase (Roche) and crosslinking chromatin was reversed by 

incubating at 65°C overnight, followed by DNA purification using Qiagen PCR-purification spin 

column.  PCRs were performed using iQ™ SYBR Green SuperMix (Bio-Rad) on an iCycler 

real-time PCR thermocycler. The enrichment was defined as the ratio of the PCR product 

amount in the “IP” sample versus “INPUT” sample using an open reading frame (ORF)-free 

region on chromosome V (ChrV) as a control. ChIP-qPCR primer sequences are as follows: 

 

ChrV forward: 5'- AGCTAGGTGAGAGAAAGCAAAGGT -3' 
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ChrV reverse: 5'- AGTGTGTACGATCTTAGTTCCAATGG -3' 

 

ENO2 forward: 5'- AGTCAGCATACACCTCACTAGGGT -3' 

ENO2 Reverse: 5'- GCTTGGTGCCACTTGTCACATACA -3' 

 

SAS10 forward: 5'- GCATCAGTGAGATGAGCTATGATGAG -3'  

SAS10 reverse: 5'- AAATTGGACTTTGCAGGGCGGATG -3'  

 

NOP2 forward: 5'- TGAGTAGGATCCAACGTGCCAAAG -3' 

NOP2  reverse: 5'- GCGACAACTGTATTTGCAGCTC -3' 

 

MTR4 forward: 5'- TCACTTTCTTGCGATGAGATGCAC -3' 

MTR4 reverse: 5'- GCAGGGAATGTTGAGTCACCGAAA -3'  

 

KRR1 forward: 5'- GCCAATTTGGATATTTGTGTGACCC -3'  

KRR1 reverse: 5'- TAGCAGGCTTGCACATCTGA -3' 

 

ERB1 forward: 5'- CAGTACCTTTCTTCGCTAGGATCT -3' 

ERB1 reverse: 5'- TGCTAATTAAGTAGGATTGAATTGTCGC -3' 

 

 

P. Gene expression profiling and quantitative RT-PCR (RT-qPCR) 

 

Three independent cultures for each of the BY4741, ∆PBF1, ∆PBF2 and ∆PBF1∆PBF2 strains 

were grown in parallel in order to carry out triplicate biological replicates. Cells were then 

subjected to heat shock treatment, i.e., growth temperature shifted from 25°C to 37°C, for 20 

min, and subsequently spun down and flash-frozen at -80°C. RNA was extracted and purified 

using Qiagen RNeasy Mini kit with DNase I treatment. Gene expression profiling was performed 

using Affymetrix
™

 Yeast Genome 2.0 GeneChip
®

 oligonucleotide arrays essentially following 

the manufacturer's protocol. Microarray data were analyzed as described previously (Choe et al. 

2005). We imposed a false discovery rate (FDR) of 0.0001 as the cut-off value to identify 
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differentially expressed genes. GO term enrichment analysis was performed by applying 

FuncAssociate (Berriz et al. 2003) on lists of differentially expressed genes ordered by their 

expression ratio. Microarray data were deposited into the GEO database with accession number 

GSE13684.  

 

qPCR reactions were performed as described above. RT-qPCR primer sequences are as follows: 

 

ACT1 forward: 5'- ACGTTCCAGCCTTCTACGTTTCCA -3' 

ACT1 reverse: 5'- ACGTGAGTAACACCATCACCGGAA -3' 

 

ENO2 forward: 5'- TCATTGCTGCTGCTTTCGTCAAGG -3' 

ENO2 Reverse: 5'- TAGCGTTAGCACCCAACTTGGACT -3' 

 

SAS10  forward:5'- GCTGATGTGGACGCACAAGACAAA -3' 

SAS10 reverse: 5'- CATCCAACAGACGTTGCTGCCTTT -3' 

 

NOP2: forward: 5'- ACGTCGATGGGTTCTTTGTCGCTA -3' 

NOP2 reverse: 5'- TTCTTCGTCCTCGAAGGTTGCGAA -3' 

 

MTR4 forward: 5'- GCTTGCCGAACCTTTGAAGGCTAT -3' 

MTR4 reverse: 5'- ACGAACCTTCGTAAACGTCGGTCA -3' 

 

KRR1 forward: 5'- TTTCCTCCTGCCCAATTGCCTAGA -3' 

KRR1 reverse: 5'- TGCTCTCTCTTCCTGCCTTTCGAT -3' 

 

ERB1 forward: 5'- TATGGCACGACCTGGATTTGGCTA -3' 

ERB1 reverse: 5'- TCATCAGCGGCAGAGCTGAATAG -3' 
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