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Toward a systems-level understanding of developmental
regulatory networks
Brian W Busser1, Martha L Bulyk2,3,4 and Alan M Michelson1
Developmental regulatory networks constitute all the

interconnections among molecular components that guide

embryonic development. Developmental transcriptional

regulatory networks (TRNs) are circuits of transcription factors

and cis-acting DNA elements that control expression of

downstream regulatory and effector genes. Developmental

networks comprise functional subnetworks that are deployed

sequentially in requisite spatiotemporal patterns. Here, we

discuss integrative genomics approaches for elucidating TRNs,

with an emphasis on those involved in Drosophila mesoderm

development and mammalian embryonic stem cell

maintenance and differentiation. As examples of regulatory

subnetworks, we consider the transcriptional and signaling

regulation of genes that interact to control cell morphology and

migration. Finally, we describe integrative experimental and

computational strategies for defining the entirety of molecular

interactions underlying developmental regulatory networks.
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Glossary

Developmental regulatory network: all of the molecular

components and their functional interactions that guide cell fate

specification and subsequent differentiation during development.

Developmental subnetwork: a portion of a larger developmental

regulatory network that controls a specific biological process in a

particular place and time during development; also referred to as a

developmental subcircuit.

Interactome: the complete set of molecular associations in a cell,

including both physical interactions and functional relationships that

do not involve direct contact between molecules.

Transcriptional regulatory network: an assemblage of

transcription factors and cis regulatory modules that combine to

control the expression of functionally related target genes within a

larger developmental regulatory network; also referred to as a gene

regulatory network.

Cis regulatory module: a segment of DNA that binds to and

integrates the activities of site-specific transcription factors to control

the expression of a gene.
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Introduction
Developmental regulatory networks comprise the com-

plete set of molecular components and their functional

interactions that guide the progressive determination of

pluripotent cells, thereby allowing cell fates to become

sequentially restricted and differentiation programs to be

properly executed during embryonic development. Both

intracellular signaling and intrinsic control mechanisms
www.sciencedirect.com
that reflect the developmental histories of cells contribute

to such developmental networks. Transcriptional regu-

latory networks (TRNs) act within and contribute to the

more global effects of developmental networks by orches-

trating embryonic gene expression patterns by controlling

whether a gene will be expressed and at what level in a

particular place and time within the embryo. TRNs

operate through cis-regulatory modules (CRMs), and

stretches of DNA composed of short DNA subsequences

that are recognized by sequence-specific DNA binding

proteins that in many cases integrate the activity of tissue-

specific, cell-specific, and signal-activated transcription

factors (TFs) to guide gene expression programs [1,2].

That is, CRMs are responsive to specific combinations of

TFs, and TRNs comprise networks of TFs, CRMs, and

coregulated genes. A TRN that orchestrates the spatio-

temporal gene expression programs specifying a given

developmental process, that is, a developmental TRN, is

one part of a larger developmental regulatory network.

The biochemical functions, post-translational modifi-

cations, and molecular interactions of the gene products

or effectors that define specific cellular behaviors within a

developing organism complete the regulatory network.

Here, we summarize recent work aimed at deciphering

selected developmental TRNs, and consider current

efforts directed toward the more challenging problem

of elucidating predictive models that account for the

complete architecture and function of developmental

regulatory networks.

Historically, molecular and genetic methods have been

used to define TFs, effector genes, and CRMs involved in

orchestrating a developmental process. Building on exten-

sive gene perturbation studies, the TRN controlling sea
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urchin endomesoderm specification was the first develop-

mental TRN to be described in detail [3]. More recently,

inroads have been made in dissecting the TRNs regulating

patterning and cell fate specification in numerous plant and

invertebrate and vertebrate animal model systems [2,4].

Interestingly, this work has shown that a network can be

subdivided into subnetworks of interconnected genes,

each of which performs a particular developmental func-

tion. Each developmental subnetwork acts at a specific

time and place to induce characteristic changes in cell

division, movement, size, shape, and a variety of special-

ized functions specific to particular cell types (such as

myoblast fusion, neuronal synapse formation, or hormone

secretion). Thus, development can be viewed as being

controlled by a sequence of subnetworks arising at particu-

lar places and times, with spatiotemporally coincident

subnetworks defining distinct cell states (Figure 1). To

illustrate this view, we discuss recent studies that have

focused on understanding the developmental networks

controlling organogenesis in selected model systems, start-

ing with the specification of individual cell fates and

progressing to the regulatory circuits that execute unique

cellular differentiation programs.

Developmental networks for cell fate
specification and differentiation
Dorsal, an NF-kB homolog, along with two of its targets,

Twist, a basic helix–loop–helix TF required to initiate

mesoderm formation [5] and Snail, a TF involved in

activating ectodermal and repressing mesodermal target

genes, comprise a set of TFs specifying distinct tissue

domains in the Drosophila embryo. Recently, two inde-

pendent groups, using a combination of chromatin immu-

noprecipitation followed by microarray analysis (so-called

ChIP-chip), genome-wide expression profiling, and inte-

grative bioinformatics approaches, investigated how these

three TFs cooperate to regulate a developmental program

[6��,7��]. Interestingly, computational scans for Dorsal

binding sites revealed an enrichment of such sites associ-

ated with Twist-bound CRMs [6��], which agrees with

the extensive coclustering of Twist and Dorsal DNA

binding site motifs [7��]. Twist and Dorsal proteins are

known to physically interact [8] and this interaction could

be dependent on the number, spacing, order, and orien-

tation of their respective binding sites. However, whether

such architectural features of a CRM, or binding site

‘grammar’ [9,10], apply to these two TFs is a possibility

that remains to be examined. This idea could be tested by

altering motifs within authentic CRMs or by creating

entirely synthetic CRMs comprising combinations of

TF binding sites of interest. Similar integrative genomics

approaches combining ChIP-chip, gene expression profil-

ing, and bioinformatics have been applied to investigate

the role of Mef2 in muscle gene transcription and the role

of Forkhead and NK homeobox TFs in Drosophila vis-

ceral muscle gene regulation [11–13]. Underscoring the

utility of the ChIP-chip approach for characterizing regu-
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latory networks in distinct tissue types in other organisms,

including mammals, is the recent description of the role of

different TFs orchestrating human liver [14], mouse

muscle [15–17], and mouse liver and pancreas [18] cel-

lular determination and differentiation.

As development progresses following the specification

and separation of embryonic germ layers, distinct devel-

opmental circuits program the progressive determination

of individual cells within these tissues. Some recent

studies have explored the regulatory networks specifying

individual cells in the Drosophila mesoderm. Jagla and his

colleagues undertook an integrative approach to examine

the role of the NK homeobox TF Ladybird (Lb) in the

specification of a subset of Drosophila heart and muscle

cells [19]. They combined ChIP-chip with gene expres-

sion profiling of Lb mutants to generate a genome-scale

view of cell fate determination. With this approach, it was

established that Lb is involved not only in the initial

specification but also in the later differentiation program

of Lb-expressing cells.

We have recently combined genetic, genomic, and com-

putational methodologies to elucidate the transcriptional

codes and downstream effectors directing Drosophila
muscle development [20��,21��,22,23]. Specifically, we

compiled a compendium of genome-wide gene expres-

sion profiles from flow-sorted primary mesodermal cells

derived from flies of multiple different genotypes that

perturb muscle development in known ways [20��]. A

statistical meta-analysis of the cumulative microarray data

resulted in the identification of hundreds of previously

uncharacterized genes with myoblast subtype expression

patterns. Computational methods were then used to

investigate if these muscle genes are subject to a common

cis-regulatory logic. To this end, the expression data

affecting muscle specification were clustered and then

analyzed with a novel computational algorithm that

evaluates the likelihood that a specific combination of

TF binding site motifs is enriched among a set of coex-

pressed genes [21��]. The results of this analysis showed

that only a subset of known myoblast subtype genes is

targeted by a subset of the predicted regulating TFs. Of

critical importance in these studies was the use of empiri-

cal tests to establish the validity of the statistical predic-

tions of both gene expression and gene regulation.

More recently, these computational algorithms were

refined and extended to decipher matrices of cis-regulat-

ory codes for hundreds of putative mammalian regulatory

motifs and gene sets [25]. These programs significantly

advance the goal of ascertaining relevant TRNs directly

from genomic sequence and gene expression data. As a

complement to these studies, catalogs of TF binding site

motifs (motif dictionaries) are being systematically com-

piled using protein-binding microarray, one-hybrid, and

comparative genomics approaches [26��,27,28��,29,30]. In
www.sciencedirect.com
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Figure 1

A developmental regulatory network controlling Drosophila embryonic somatic muscle formation. The specification and differentiation of somatic

muscle cells in the Drosophila embryo is shown here as an example of how distinct developmental subnetworks direct the progressive determination

of initially pluripotent cells. The fundamental themes that are highlighted are likely to be similar for a diverse array of other cell types. Maternal factors

first activate expression of a TF (diamond) which subdivides the Drosophila embryo into distinct tissue domains by activating and repressing (not

shown) distinct sets of zygotic target genes. The zygotically expressed TF specific for the mesodermal germ layer (oval) is able to autoregulate its own

expression to amplify the maternal response and to promote stability in the transcriptional network governing mesoderm formation. The germ layer-

specific TF in association with the maternal factor activates subnetworks of genes important for different processes such as those governing cell

migration. The germ layer-specific TF — along with signal-activated TFs (pentagons) — also activates batteries of genes that include additional tissue-

specific TFs (squares) that serve to subdivide the mesoderm into distinct mesodermal tissues (including heart, fat body, visceral, and somatic muscle).

Focusing on the somatic mesodermal subdivision, germ layer-specific, tissue-specific, and signal-activated TFs cooperate in activating distinct sets of

genes, including Cell type-specific or ‘identity’ TFs (light blue-green and dark blue triangles). Repressive and autoregulatory interactions among the

Cell type-specific TFs contribute to the pattern of individual cellular identities. Coincident with or shortly after cell fate specification, sets of genes will

be activated by the germ layer-activated, tissue-activated, signal-activated, and Cell type-specific TFs to form subnetworks of effectors important for a

myriad of developmental processes including cell fusion and adhesion. The products encoded by these genes may work together with constitutively

expressed components that also are involved in the same process. In addition, different subnetworks can overlap as the components from one

subnetwork can be utilized in other subnetworks and can be affected by the activity of multiple inputs. The final stages of differentiation are driven by

tissue-specific and Cell type-specific TFs which activate additional subnetworks of genes, such as those important for sarcomere structure and high

rates of metabolism. Cell type-specific effectors — regulated by the corresponding identity TFs — contribute to the unique functional and structural

features of individual myotubes (represented by the light blue-green and dark blue nuclei in the differentiated muscles shown at the upper right of the

figure). The myogenic regulatory network depicted here incorporates the collective findings of numerous independent studies [6��,7��,11–

13,19,20��,21��].
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an important application of these approaches to one large

family of TFs, Berger et al. and Noyes et al. highlighted

differences in binding sequence preferences associated

with different classes of homeodomain (HD) proteins

[26��,28��], thereby increasing the utility of information

about such motifs for genome-wide computational scans.

Such DNA binding profiles or motif dictionaries can be

used to computationally predict combinations of TFs that

may coregulate particular gene sets [25]. Hypotheses

derived from such bioinformatics approaches must then

be independently validated using appropriate transcrip-

tional reporter assays.

As comprehensive in situ hybridization atlases of gene

expression are compiled for various tissues, cis-regulatory

codes for coexpressed genes can be predicted using

similar methods. Recently, Malik and his colleagues

combined in situ hybridization with the embryonic pos-

ition of gene expression and morphological ‘landmarks’ to

describe an atlas of coexpressed genes along the ante-

roposterior axis in Drosophila [31]. Similarly, the Allen

Brain Atlas combined serial sectioning and anatomical

registering to elucidate expression of transcripts in the

adult mouse brain [32]. Although a significant first step, it

is likely that more sophisticated approaches and techno-

logical advances will be required to resolve the expression

patterns of the full complement of genes expressed by an

individual cell in more complex tissues. Toward this end,

individual cells can now be purified by laser capture

microdissection [33] or by fluorescence-activated cell

sorting [20��,34��,35,36�], and significant increases in

the sensitivity of transcript detection can be obtained by

massively parallel sequencing technologies [37]. Combin-

ing these approaches should lead to the identification of

coexpressed genes at single cell resolution. Together,

experimental and computational strategies that refine gene

expression profiling and CRM prediction will facilitate the

delineation of the complete genetic programs of individual

cells, and will contribute to our understanding of the

molecular basis of cellular and organismal phenotypes.

An emerging view is that key regulatory TFs controlling

organogenesis exert their influence upon many down-

stream targets throughout a developmental process. In

further support of this mechanism, we described a role for

Twist in regulating gene expression within a subset of

Drosophila embryonic myoblasts, including genes that

have either early or late developmental functions as these

cells differentiate [21��]. In addition, Twist activates the

expression of numerous TFs (about 25% of all annotated

TFs) and potentially functions together with these factors

in regulating downstream target genes [6��]. Such feed-

forward mechanisms — in which one TF regulates the

expression of a second TF and then both factors regulate

the expression of a third gene — are quite prevalent in

developmental regulatory networks, serving to generate

combinatorial specificity and to lock in a new cellular state
Current Opinion in Genetics & Development 2008, 18:521–529
[2,14,18,38,39]. In addition, combinatorial regulation of

target genes involving the cooperative binding of

multiple TFs is widespread throughout development

[1,2,6��,7��,11,16–18,21��,24]. Related work has further

shown that there is significant crossregulation and auto-

regulation of key regulatory TFs, which has been

suggested to promote stability in transcriptional networks

[2,6��,7��,13,14,16–18]. Finally, these studies highlight

the importance of integrating numerous genome-scale

datasets to dissect and model TRNs. Integration of

various data types can provide novel insights, in particular

because setting empirical thresholds set on a single data

type can be challenging and can lead to erroneous con-

clusions [40]. Combining multiple, independently gener-

ated observations (such as gene expression, in vivo TF

binding, physical and genetic interactions, and the clus-

tering and evolutionary conservation of DNA motifs) to

infer network structure can strengthen the resulting

model [41��,42].

Developmental subnetworks
Transcriptional mechanisms drive the coexpression of

functionally related genes which interact within subnet-

works that govern how cells undergo their unique devel-

opmental behaviors. An ‘interactome’ — defined here as

the complete set of molecular associations in a cell —

comprise not only physical interactions but also functional

relationships which do not require direct contacts such as

protein–protein, protein–DNA or mRNA–microRNA

interactions. Given their functional significance, defining

Cell type-specific interactomes can be even more import-

ant than identifying gene coexpression and coregulation

for acquiring a systems-level view of development.

In addition, a comprehensive understanding of the sub-

networks that underlie development can provide

mechanistic insight into a mutant phenotype or drug

action. For example, a network analysis approach has

been successfully applied in yeast by clustering gene

expression data for approximately 300 deletion mutants

to predict and verify the mechanism of action of an

antifungal drug [43]. A similar perturbation-based mol-

ecular signature strategy has been applied to a mamma-

lian cell line to infer strong connectivities among related

drugs which act at points distal to transcriptional regula-

tion, to generate testable hypotheses about how unchar-

acterized small molecules act based on their related

effects on gene expression, and to identify unanticipated

relationships between known drugs that can be exploited

in developing new combination chemotherapies [44].

The utility of these systematic perturbation strategies

will be greatly enhanced by efforts to create predictive

models of biological networks in many different contexts,

including development.

Interactome data can be derived from various sources

(gene coexpression, coregulation, literature mining, etc.)
www.sciencedirect.com
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with many interactions being identified by high-through-

put technologies such as yeast two-hybrid assays [45–47],

protein affinity purification followed by mass spectrom-

etry [48,49], and synthetic lethal/sickness screens [50–52].

Fraser and his colleagues have undertaken a synthetic

lethal screen to catalog genetic interactions affecting C.
elegans vulva development. They identified a small group

of genes, or hubs, that interact with many other genes in

the genetic network [52]. Integrating this information

with gene expression profiles, physical and genetic inter-

actions, and literature mining, Marcotte, Fraser and their

colleagues built a proteome-scale probabilistic network of

genetic interactions for C. elegans [53��]. This network

successfully predicted tissue-specific phenotypes and

identified novel genes involved in disparate pathways.

Similarly, Zhong and Sternberg integrated interactome,

expression, and annotation data sets for C. elegans and

comparable data from other species to fill in ‘holes’ in any

one data set to predict novel genetic interactions [54��].
Finally, a study by Zhu et al. combined gene expression,

protein–protein interaction, and TF binding site data to

build a network capable of predicting systems-level beha-

vior in yeast [41��]. Importantly, they identified and

empirically verified subnetworks of genes which are

coordinately controlled by factors associated with particu-

lar expression quantitative trait loci. Taken together,

these studies establish that a comprehensive ‘circuit

diagram’ can be delineated for complicated biological

processes, and suggest the potential to similarly elucidate

even more complex developmental networks.

The previously described work involved organism-scale

interactome studies. However, developmental subnet-

works are largely operative at the level of individual cells,

each of which expresses a unique combination of

proteins. Thus, recent studies have moved toward a

systems-level understanding of the composition of the

signaling and transcriptional networks regulating the

morphology and migration of a uniform population of

single cells. Bakal et al. sought a quantitative understand-

ing of the signaling networks regulating cell morphology

by manipulating gene expression in fluorescently labeled

cultured Drosophila neuronal cells [55��]. Image analysis

algorithms and hierarchical clustering were used to define

groups of genes which, when perturbed, exhibit pheno-

types with similar morphological features (‘phenoclus-

ters’). This strategy allowed the authors to map the local

signaling networks that control cell adhesion and mem-

brane protrusion and tension.

A logical extension of this work would involve proceeding

from cellular phenotypes to phenoclustering genes

orchestrating more complex developmental functions.

As genes performing a similar function tend to be coex-

pressed and transcriptionally coregulated, it is likely that

these developmental phenoclusters are under common

transcriptional regulation. Along these lines, a recent
www.sciencedirect.com
study sought to understand how transcriptional networks

control the generation of morphological form during heart

cell migration in Ciona intestinalis [34��]. The major find-

ing was that distinct effector genes important for directed

cell migration were transcriptionally regulated by the

cardiogenic network. Interestingly, these effector genes

worked in concert with other constitutively expressed

cellular components involved in the same process. Thus,

these two sets of genes together coded for the cellular

machinery enabling proper cell migration. This study

highlights the modular nature of regulatory networks,

in which transcriptional regulation of a small set of

effector genes can dramatically influence a developmen-

tal process.

Developmental networks controlling
embryonic stem cells
Embryonic stem (ES) cells depend on an extensive net-

work of TFs and external signals to maintain their undif-

ferentiated state and their ability to selfrenew and

differentiate [56]. There have been extensive efforts to

study these cells’ regulatory networks not only to under-

stand development and disease but also with the goal of

reprogramming somatic cells to acquire a stem cell fate

[57]. Because of their prevalence and ability to be cul-

tured and differentiated in vitro, ES cell lines provide a

facile system for investigating developmental regulatory

networks and subnetworks. In order to avoid the pitfalls

of working in vitro, additional genome-scale studies will

be required to dissect the cellular and molecular events

directing self-renewal and differentiation of ES cells in

systems where these cells can be tracked in vivo [58].

Two recent studies used loss-of-function and gain-of-

function approaches to define genes important for ES

cell maintenance [59,60]. Lemischka and his colleagues

used loss-of-function RNA interference to define three

previously unrecognized genes that regulate ES cell

maintenance [59]. In contrast, Takahashi and Yamanaka

used a gain-of-function approach to define genes import-

ant for reprogramming mouse somatic cells to an ES-like

cell state [60]. They showed that the overexpression of

just four TFs induced reprogramming of embryonic and

adult mouse fibroblasts to an ES cell-like state (so-called

induced pluripotent stem (iPS) cells). Similar combi-

nations of TFs are sufficient to convert human somatic

cells into iPS cells [61,62].

Our understanding of somatic cell reprogramming is

increasing as the regulatory network used by ES cells

is interrogated on the genome-scale with ChIP-chip or

ChIP-Seq (which uses high-throughput sequencing to

detect and quantify immunoprecipitated DNA fragments

bound by TFs) [63,64�,65,66]. In fact, with such extensive

whole-genome data sets — including ChIP-chip and

ChIP-Seq of multiple TFs, maps of epigenetic states,

expression profiling of genetically manipulated cells,
Current Opinion in Genetics & Development 2008, 18:521–529
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protein–protein interactions, and complementary studies

in more than one mammalian species [59,63,64�,65–
68,69�,70–72] — it should be possible to construct com-

prehensive developmental ‘wiring diagrams’ similar to

those previously described for yeast, sea urchin, and C.
elegans [2,3,41��,53��,54��]. Finally, reprogramming

somatic cells into iPS cells is progressing at an unprece-

dented pace, and recent protocols have removed the

tumor-inducing c-myc gene from the cocktail of inducing

factors [62,73]. However, this manipulation led to a low-

ering of the reprogramming efficiency [73] which could

be circumvented by adding chemical inhibitors of histone

deacetylase and DNA methyltransferase to cell cultures

[69�,74]. A more thorough understanding of the ES cell

network should suggest additional rational perturbations

that may avoid the use of inhibitors which alter genome-

wide patterns of epigenetic modifications, thereby pre-

venting potentially unintended consequences.

Conclusions and future directions
In this review, we have described examples of regulatory

networks that direct organogenesis through their effects

on cell fate specification and differentiation, and we have

highlighted integrative systems-level approaches that are

being used to analyze the organization and functions of

such networks. The emerging view is that subnetworks

within larger cellular regulatory networks drive specific

aspects of the progressive determination and subsequent

differentiation of individual cells. Recent work has also

demonstrated the importance of integrating multiple

genome-scale and proteome-scale data sets to increase

the power of network models to predict the functions of

interacting genes involved in a particular biological pro-

cess. As Davidson and his colleagues have recently shown

for skeletogenesis in the sea urchin embryo [75�], it is now

possible to reconstruct regulatory networks that are suffi-

ciently comprehensive as to explain the transcriptional

control of genes encoding all TFs and signals affecting a

developmental process. Combining genomic and other

systems-level data with loss-of-function studies should be

an essential part of a platform for understanding and

modeling other developmental regulatory networks.

Indeed, whole-genome RNAi-based loss-of-function stu-

dies are now approachable in cultured mammalian cells

[76,77], paving the way for rapid genome-wide pertur-

bation analysis of numerous cellular and developmental

mechanisms. The challenge here will be to relate cell

culture findings to in vivo events where cell–cell and cell–
matrix interactions play an important role.

While genomic tools are currently in place for identifying

components of biological regulatory networks through

systematic perturbation studies, a major limitation to

applying these methods for the dissection of functional

protein interactions is the availability of informative high-

throughput assays. In this regard, it should be possible to

adapt a recently described method, protein fragment
Current Opinion in Genetics & Development 2008, 18:521–529
complementation assays, to directly measure protein–
protein interactions in living cells, thereby raising the

possibility of describing large-scale, Cell type-specific

interactomes in the very near future [78]. This approach

can also be employed in a more targeted manner to test

specific predictions of regulatory network models derived

from other findings. Finally, it must be recognized that

studies of developmental regulatory networks to date

have largely emphasized qualitative assessments of net-

work components and their functional interactions. How-

ever, it must be kept in mind that a regulatory model is

only as complete and accurate as its ability to explain all

aspects of development — from the integration of

upstream signaling and transcriptional networks, to the

downstream effector functions of target gene products —

in a predictive, quantitative manner that can account for

all cellular behaviors and interactions within the embryo.

The construction of such models will require the gener-

ation of quantitative and dynamic datasets — including,

for example, developmental time course measurements

of protein concentrations in relevant subcellular compart-

ments and affinity constants for molecular interactions —

as well as the development of new computational tools for

the analysis and integration of such information. Achiev-

ing these goals will be a major challenge for develop-

mental systems biology in the coming years.
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