Microarray Analyses of Newborn Mouse Ovaries Lacking Nobox¹

Youngsok Choi,³ Yingying Qin,^{3,4} Michael F. Berger,^{5,6} Daniel J. Ballow,³ Martha L. Bulyk,^{5,6,7,8} and Aleksandar Rajkovic^{2,3}

Department of Obstetrics and Gynecology,³ Baylor College of Medicine, Houston, Texas 77030 Center for Reproductive Medicine,⁴ Shandong Provincial Hospital of Shandong University, Jinan, 250012, China Division of Genetics,⁵ Harvard University Graduate Biophysics Program,⁶ Department of Pathology,⁷ and Harvard/MIT Division of Health Sciences and Technology,⁸ Cambridge, Massachusetts 02138

ABSTRACT

Nobox is a homeobox gene expressed in oocytes and critical in oogenesis. Nobox deficiency leads to rapid loss of postnatal oocytes. Early oocyte differentiation is poorly understood. We hypothesized that lack of Nobox perturbs global expression of genes preferentially expressed in oocytes as well as microRNAs. We compared Nobox knockout and wild-type ovaries using Affymetrix 430 2.0 microarray platform. We discovered that 28 (74%) of 38 of the genes downregulated more than 5-fold in the absence of Nobox were preferentially expressed in oocytes, whereas only 5 (15%) of 33 genes upregulated more than 5-fold in the absence of Nobox were preferentially expressed in oocytes. Protein-binding microarray helped identify nucleotide motifs that NOBOX binds and that several downregulated genes contain within putative promoter regions. MicroRNA population in newborn ovaries deficient of Nobox was largely unaffected. Genes whose proteins are predicted to be secreted but were previously unknown to be significantly expressed in early oogenesis were downregulated in Nobox knockouts and included astacin-like metalloendopeptidase (Astl), Jagged 1 (Jag1), oocyte-secreted protein 1 (Oosp1), fetuin beta (Fetub), and Rspondin 2 (Rspo2). In addition, pluripotency-associated genes Pou5f1 and Sall4 are drastically downregulated in Noboxdeficient ovaries, whereas testes-determining gene Dmrt1 is overexpressed. Our findings indicate that Nobox is likely an activator of oocyte-specific gene expression and suggest that the oocyte plays an important role in suppressing expression of male-determining genes, such as Dmrt1.

follicular development, folliculogenesis, gamete biology, microarray, microRNA, Nobox, oocyte, oocyte development, oogenesis, ovarian failure, ovary, transcription factor

INTRODUCTION

Oocyte differentiation begins in the mouse embryonic gonad after oogonia enter meiosis around 13.5 days postcoitum (dpc). In the mouse embryonic gonad, oocytes exist as clusters also known as *cysts* [1, 2]. Within a few days of birth, oocyte clusters break down, and individual oocytes become enveloped by flat somatic pregranulosa cells. The early germ cell-somatic

Received: 1 February 2007. First decision: 5 March 2007. Accepted: 30 April 2007. © 2007 by the Society for the Study of Reproduction, Inc. ISSN: 0006-3363. http://www.biolreprod.org units are called *primordial follicles*, and oocytes in these units are usually less than 20 μ m in diameter. Several signaling molecules, such as *Kitl*, *Fgf2*, *Fgf7*, neurotrophins, *Lif*, and steroids, have been implicated in the primordial to primary and growing follicle transition [3–9]. Oocyte-somatic cell communications are paramount for the successful differentiation of the follicular unit, but little is known about the molecules that initiate germ cell cluster breakdown [10]. Factor in the germline alpha (*Figla*) was the first oocyte-specific basic helix-loop-helix transcription factor that was shown to affect primordial follicle formation in mammals [11]. However, downstream targets of *Figla* that are critical for the formation of primordial follicles are largely unknown.

We identified *Nobox*, a homeobox gene preferentially expressed in the germline, as critical in the early oocyte differentiation [12, 13]. *Nobox* knockout females are infertile and lose oocytes quickly, so that by 2 weeks of postnatal life the ovary is depleted of oocytes. At the time of birth, *Nobox* knockout females contain oocytes that grossly do not differ from the wild-type ovaries. We therefore used whole-mouse genome expression arrays and microRNA arrays to identify genes and microRNAs perturbed significantly by the lack of *Nobox*. In addition, we used protein binding microarray (PBM) technology [14] to identify NOBOX binding preferences and identified a subset of genes that contain such elements in their promoter regions.

MATERIALS AND METHODS

Microarray Analysis

Newborn ovaries were pooled separately from wild-type and Nobox^{-/-} animals, and total RNA was isolated using RNeasy mini kit (Qiagen). Newborn ovaries were collected within 12 h of delivery. Animal experimentation was approved by the Institutional Animal Care and Use Committee of Baylor College of Medicine. Three independently pooled RNA samples from wildtype and Nobox^{-/-} newborn ovaries were used to generate biotinylated cRNA. Biotinylated cRNA was hybridized to GeneChip Mouse Expression Set 430 2.0 (Affymetrix Inc.). Since three independent experiments were performed from three independent pools of wild-type and $Nobox^{-/-}$ RNA, signal intensities for particular genes were averaged between the three chips, and ratio of the wildtype over the knockout signal was calculated. Signal less than 100 was considered background. The raw data in the Affymetrix CEL files were normalized by the RMA method (robust multiarray analysis) [15, 16]. Then, the null hypothesis that there is no significant change in gene expression between the treatment pairs was tested. This was done by LIMMA [17] and the pooled local error (LPE) method [18]. The raw P values were adjusted by the Benjamini-Hochberg method for the false-discovery rate of 5% [19]. We used the DAVID database [20] to aid in functional annotation of genes affected by Nobox deficiency.

Total RNA was isolated for microRNA microarray, size fractionated (<200 nt) using *mir*Vana RNA isolation kit (Ambion), and labeled with Cy3 (wild-type) and Cy5 (*Nobox* knockout). Microarray microRNA assays were performed on a μ ParaFlo microfluidics chip (LC Sciences LLC) containing 373 distinct microRNAs based on Sanger miRBase Release 9.0. The melting temperature of the detection probes was balanced by the incorporation of a

¹Supported by grant HD044858, and a March of Dimes grant (6-FY05-70) to A.R.

²Correspondence: Aleksandar Rajkovic, Department of Obstetrics and Gynecology, Baylor College of Medicine, 1709 Dryden Rd., Suite 1100, Houston, TX 77030. FAX: 713 798 2744; e-mail: rajkovic@bcm.edu

varying number of modified nucleotides with increased binding affinities. The maximal signal level of background probes was less than 250.

RNA Isolation, RT-PCR, Quantitative PCR, and In Situ Hybridization

Multitissue RT-PCR was performed as previously described [21]. Oligonucleotides corresponding to *Nlrp14* (also known as *Nalp14*), *Nlrp4a* (also known as *Nalp4a*), *Nlrp4f* (also known as *Nalp4f*), *Nlrp4c* (also known as *Nalp4c*), *Oas1c*, *Oas1c*, *Oas1e*, *Oas1a*, *Bax*, *Bcl2*, *Bcl2l2*, and *Casp2* were selected using Primer 3 software (http://www.genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi) to generate an approximately 500-bp nucleotide fragment that is interrupted by an intron within the mouse genome. The sequences of these primers are available on request from A.R. Mouse actin-specific primers were used to verify cDNA synthesis from RNA isolated from each tissue. Polymerase chain reaction was carried out for 28 cycles. For each cycle, the template was denatured at 94°C for 30 seconds, annealed at 55°C for 30 seconds, and extended at 72°C for 30 seconds, and PCR products were resolved on 2% agarose gels. RT-PCR results were verified on three independently collected pools of newborn ovaries.

Quantitative real-time PCR was performed on the ABI Prism 7500 Sequence Detection System (ABI, Foster City, CA) using Assays-On-Demand (ABI) PCR primer and probe sets for each gene and mouse Gapdh (VIClabeled MGD probe; primer limited; ABI) as the endogenous control. RT-PCR was performed using the TaqMan Universal PCR Master Mix (ABI) in 20 µl. Each sample was analyzed in duplicate from at least three independent newborn wild-type and Nobox--- cDNA samples. Two nontemplate controls (RNasefree water) samples were included on each plate for each primer-probe set. The relative amount of transcripts was calculated by the $\Delta\Delta$ CT method as described by Applied Biosystems using the ABI 7500 System Software (V.1.2.3) and was normalized to the endogenous reference (Gapdh). One wild-type sample was randomly chosen to serve as the reference sample to which all other samples were normalized. The average and standard error were calculated for the triplicate measurements, and the relative amount of target gene expression for each sample was plotted. Significance was performed using Student t-test using Excel (Microsoft).

Mouse cDNA fragments corresponding to *Oas1d*, *Nlrp14*, *Nlrp4f*, and *AU016322* were subcloned into the pGEM-T Easy vectors (Promega) and used to generate antisense and sense strands by labeling with $[\alpha^{-35}S]$ UTP using the Riboprobe T7/SP6 Combination System (Promega) [22]. In situ hybridization was carried out as previously described [21]. In situ hybridizations were performed on ovarian sections derived from at least two different animals.

Protein Binding Microarray

We fused NOBOX amino acids 124–205 (containing the homeodomain region) with the glutathionine *S* transferase protein in the pet-41B vector (Novagen) to create a GST-NxHD protein. GST-NxHD protein fusion was purified on the GST bind resin column (Novage) and dialyzed against $1 \times$ PBS. Protein-binding microarrays were performed and enrichment scores calculated essentially as described previously [14, 23–25].

RESULTS

Nobox Deficiency Disproportionately Affects Expression of Genes Preferentially Expressed in the Oocytes

We showed previously that several genes preferentially expressed in oocytes, such as Gdf9, Pou5fl (also known as Oct4), and Mos, are drastically downregulated in ovaries deficient in NOBOX [13]. In addition, our data suggest that NOBOX directly binds Gdf9 and Pou5f1 promoters, and may therefore directly regulate transcription of Gdf9 and Pou5f1 [26]. In order to better characterize effects of Nobox deficiency on the global newborn ovary transcriptome, we analyzed Nobox knockout and wild-type newborn ovaries with the whole-genome mouse expression arrays. We chose to compare newborn ovary transcriptomes due to the grossly similar histology and oocyte numbers in both wild-type and Noboxdeficient mouse ovaries. We used Affymertrix 430 2.0 mouse microarray because it is the most comprehensive array system that allows expression inquiry for more than 34000 wellsubstantiated mouse genes and expressed sequence tags

(ESTs). Analysis of three independent experiments comparing *Nobox*-deficient and wild-type newborn ovaries revealed that a total of 1432 genes showed significantly different expression levels (Supplementary Tables 1–4, available online at www. biolreprod.org). Among these 1432 genes were genes that we previously identified as downregulated [13], except for *Dnmt1o* and *Fgf8*, which were not detected in our microarray analysis. The oocyte-specific isoform of *Dnmt1* (*Dnmt1o*) is not represented on the Affymetrix 430 chip, and as such will not be detected. *Fgf8* is not abundantly expressed and therefore is detectable only by RT-PCR but not by microarrays in the newborn ovaries.

Genes that showed greater than 2-fold expression differences in *Nobox*-deficient ovaries are involved in many different biologic processes (Supplementary Table 2). We chose to further analyze a 5-fold difference arbitrarily, thinking that such genes are more likely to be directly regulated by *Nobox*. A total of 38 genes were downregulated more than 5-fold in the *Nobox*-deficient newborn ovaries (Table 1 and Supplementary Tables 3 and 4). We used Unigene EST database and GNF Sym Atlas resources to determine which genes are preferentially expressed in germ cells [27]. A total of 28 (74%) of 38 genes that were downregulated more than 5-fold showed preferential expression in oocytes (Table 1), whereas only 5 (15%) of 33 genes that were upregulated more than 5-fold showed preferential expression in oocytes (Table 2).

Crabp2 (cellular retinoic acid binding protein 2) and *Stra8* (stimulated by retinoic acid gene 8) are both involved in the retinoic acid metabolism and are among the few upregulated genes expressed in oocytes (Fig. 1G and Table 2). *Crabp2* is not essential for oogenesis, because *Crabp2*-deficient mice are fertile and grossly normal [28]. *Stra8* is essential for fertility and is expressed in premeiotic germ cells [29]. *Stra8* may be essential for the onset of meiosis, but it disappears as oocytes become arrested in meiosis in wild-type ovaries, and it is not detectable at the newborn ovary stage. *Stra8* persistent expression in the *Nobox*-deficient oocytes are immature at the molecular level, despite forming primordial-like follicles.

Genes Essential for Pluripotency Are Downregulated in Nobox Knockout Ovaries

Pou5fl and Sall4 transcription factors are downregulated in Nobox knockout ovaries more than 30- and 20-fold, respectively (Fig. 1, A and D) [13]. Pou5fl is a POU domainencoding homeobox gene that is essential for pluripotency and critical in primordial germ cell biology [30]. Pou5f1 expression diminishes around Embryonic Day 15.5 (E15.5), when oocytes enter meiosis, and reappears after birth [13, 31]. The role of *Pou5f1* in folliculogenesis is unknown, but its reexpression in the newborn ovary may be essential in establishing reprogramming potential to the egg. Indeed, another transcription factor, Sall4, is a zinc finger transcriptional regulator known to be essential for pluripotency [32], expressed in oocytes [27], and to regulate Pou5f1 expression [32]. Sall4 is drastically downregulated in Nobox knockout ovaries (Fig. 1D) and may also play an important role in conferring oocytes the ability to reprogram. Other transcriptional regulators implicated in pluripotency, such as Sox2, Nanog, and Nr6a1, were not detectable in the wild-type mouse newborn ovary microarrays (data not shown). Lin28 is a developmental regulator preferentially expressed in oocytes, early embryos, and embryonic stem cells [27, 33]. Lin28 is expressed in wildtype newborn ovaries, but its expression is not affected by the

TABLE 1. Genes down-regulated at least five-fold in *Nobox* knockout ovaries.

TABLE 2. Genes up-regulated at least five-fold in *Nobox* knockout ovaries.

Gene	Fold change	Germ cell specific	Function	Gene	Fold change	Germ cell specific	Function
Mos	109.2	Y	Protein kinase	Krt34	5.4	Ν	Keratin complex, cytoskeleton
H1foo	77.8	Y	Histone, oocyte-specific	A930031D07Rik	5.4	Ν	Unknown
Rfpl4	72.3	Y	Ring finger protein	Hsd17b2	5.4	Ν	Estrogen biosynthesis
C86187	69.3	Y	Unknown	Plac1	5.5	Ν	Unknown, early embryo and
D5Ertd577e	63.2	Y	Unknown				placenta
BC052883	48.7	Y	Unknown	Trib3	5.7	Ν	Cellular signalling
Ttid	39.6	Ν	Actin binding	Tekt2	5.8	Y	Cytoskeleton, testes
Nlrp4f	39.2	Y	Unknown	9530026P05Rik	6.2	Ν	Unknown
Nlrp14	37.2	Y	Unknown	4933405K07Rik	6.5	Y	Transcription factor, zinc finger,
Oog1	36.9	Y	Unknown				testes
Pou5f1	30.5	Y	Transcription	Btn1a1	7.0	Ν	Unknown, butyrophilin
BG071013	29.6	Ν	Unknown	Slc13a4	7.8	Ν	lon transporter
1700008108Rik	29.3	Y	Transcription	Krt77	7.8	Ν	Cvtoskeleton, keratin
D9Ertd414e	25.1	Ν	Unknown	Ehf	8.1	Ν	DNA binding, transcription
Sall4	24.1	Ν	Transcription	Mat1a	8.3	Ν	Methionine adenosyltransferase
Oas1e	23.7	Y	Oligoadenvlate synthetase	LOC433110	8.5	Ν	Unknown
BM229829	19.5	Y	Unknown	4921517I23Rik	8.5	Ν	Unknown
Oas1d	18.9	Y	Oligoadenvlate synthetase	1110017I16Rik	8.5	Ν	Unknown
D11Ertd636e	18.6	Y	Unknown	Gad1	8.7	Ν	Glutamate decarboxylase
2610028F08Rik	17.9	Y	Protein kinase	AK136780	9.0	Ν	Unknown
Oas1c	16.6	Y	Oligoadenvlate synthetase	BB769641	10.0	Ν	Ion channel
Slc6a20	15.7	Ν	Solute carrier	1700019D03Rik	10.4	Y	Unknown, testes specific
Rims1	14.9	Ν	Exocvtosis	Pte2a	10.5	Ν	Peroxisomal thioesterase
Padi6	14.7	Y	Arginine deiminase	Dmrt1	10.6	Y	Transcription, sexual
Astl	13.9	Y	Secretory factor				differentiation
AK005675	13.2	Y	Unknown	Smvd1	10.8	Ν	Muscle transcription factor
Gdf9	12.5	Y	Secretory factor	Stra8	13.7	Y	Retinoic acid induced, meiosis
E130009I12Rik	10.8	Y	Unknown	Grb7	16.9	Ν	Growth factor receptor bound
Oosp1	8.9	Ŷ	Secretory factor				protein
E330034G19Rik	8.9	Y	Aldehvde dehvdrogenase	Asb9	17.6	Ν	Unknown function
Oas1h	7.7	Ŷ	Oligoadenvlate synthetase	Crabp2	18.9	N	Retinoic acid binding protein
Aldrl6	7.4	Ň	Aldehyde reductase	Gib5	19.9	N	Gap junction protein
Dnahc8	7.4	Y	Microtubule movement	Fgf21	31.3	Ν	Fibroblast growth factor 21
Fetub	7.1	Ň	Secreted factor	Fgfbn1	35.2	N	Fibroblast growth factor binding
NIrp4c	5.6	Ŷ	Unknown	0.~1			protein
lag1	5.3	Ň	Notch signaling pathway	Gypa	45.5	Ν	Glycophorin A, red blood cell
Olfr976	5.2	Ŷ	Olfactory receptor	-//~			antigen
011.57.0	5.2	•		Sftpd	55.2	Ν	Surfactant associated protein D
				2210409E12Rik	66.2	N	Unknown, blastocyst specific

lack of *Nobox* (Fig. 1F). The role of *Lin28* in the pluripotency of the stem cell biology is not clear and awaits further investigations. The expression of *Pou5f1*, *Sall4*, and *Lin28* in the newborn oocytes as well as the downregulation of *Pou5f1* and *Sall4* in the *Nobox*-deficient ovaries signifies that these essential pluripotency networks lie downstream of *Nobox*.

Signaling Proteins

Kit, Kitl, and multiple other growth factors have been implicated in the promotion of primordial to primary follicles, but little is understood about oocyte-specific secretory factors that are critical in the formation of germ cell cysts and primordial follicles [9]. We therefore examined whether proteins predicted to be involved in signaling were affected by Nobox deficiency. Transcripts corresponding to astacin-like metalloendopeptidase (Astl), jagged 1 (Jag1), growth differentiation factor 9 (Gdf9), fetuin beta (Fetub), oocyte-secreted protein 1 (Oosp1), and R-spondin 2 homolog (Rspo2) were downregulated at least 3-fold (Fig. 1, B and E). Gdf9 plays a central role in oocyte signaling to the somatic cells and is downregulated in Nobox-deficient ovaries [13]. Gdf9 knockout experiments show primary follicle arrest [34], and Gdf9 does not appear to be essential in the formation of primordial follicles.

Little is known about the roles of *Astl*, *Oosp1*, *Rspo2*, *Jag1*, and *Fetub* in oogenesis. *Astl* is a member of the astacin family

of metalloproteinases and is preferentially expressed in human and mouse oocytes [35]. Although its function has not been determined by knockout, its location and structure suggest that Astl is similar to hatching proteases in arthropods and fish. It is therefore likely that Astl is a maternal effect gene and does not play significant function in early folliculogenesis. Oospl is exclusively expressed in oocytes, but its function is unknown [36]. Functions of Fetub, Jag1, and Rspo2 in oogenesis are currently unknown, and future studies are necessary to determine the role of these genes in early folliculogenesis. Therefore, it is clear that transcripts encoding several secreted proteins are downregulated in Nobox-deficient ovaries, and some of these proteins may be critical in oocyte-somatic communication required for the breakdown of germ cell cysts and the formation of primordial follicles. Future studies on these proteins may improve the efficiency of in vitro maturation of oocytes.

Nlrp and Oas Family of Gene Expression in Nobox Knockout Ovaries

Nlrp genes belong to a large family of genes that encode proteins involved in apoptotic and inflammatory signaling pathways. Several *Nlrp* genes play critical functions in humans and mice. *Nlrp5* (also known as *Nalp5* and *Mater*) is a maternal effect gene essential for embryonic development past the two-

FIG. 1. Expression of Pou5f1 (A), Rspo2 (B), Nlrp4c (C), Sall4 (D), Jag1 (E), Lin28 (F), Stra8 ($\hat{\mathbf{G}}$), and Dmrt1 (\mathbf{H}) transcripts in the newborn wild-type (WT) and Nobox-deficient (Nx - / -) ovaries was quantitated by qPCR. Pou5f1, Rspo2, Nlrp4c, Sall4, and Jag1 show statistically significant downregulation in mutant ovaries, whereas Stra8 showes up regulated in Nobox^{-/-} ovaries. Expression of Lin28 showed no statistically significant difference between WT and Noovaries (P > 0.05). Data are boxnormalized to Gapdh expression and presented as the mean relative quantity (compared to the wildtype). Student *t*-test was used to calculate P values. *P < 0.05; **P <0.01.

cell stage [37]. NLRP7 (also known as NALP7) is a human maternal effect gene important in recurrent spontaneous abortions and molar pregnancies [38], whereas Nlrp3 (also known as Nalp3) dysfunction causes multisystemic inflammation. Several Nlrp genes are expressed preferentially in germ cells and include Nlrp14, Nlrp4f, and Nlrp4c [39]. Nlrp14 is preferentially expressed in oocytes and spermatogonia, and mutations in *Nlrp14* can be found in men with spermatogenic failure [40, 41]. However, little is known about the in vivo roles for *Nlrp14*, *Nlrp4f*, and *Nlrp4c* in germ cell biology, as knockout mouse models have not been reported. Nlrp14 is drastically downregulated in Nobox newborn ovaries (Fig. 2, A and B) as well as *Nlrp4f* and *Nlrp4c* (Figs. 2A and 1C). Whether Nlrp14, Nlrp4f, or Nlrp4c is critical in early folliculogenesis or, like Nlrp5, acts as a maternal effect gene, awaits generation of animals that lack these genes.

Oas1d, *Oas1c*, *Oas1e*, and *Oas1h* belong to a 2',5'oligoadenylate synthetase (OASs) family of genes. OAS family expression is highly induced by alpha/beta interferons as a response to viral infection. OAS proteins bind double-stranded RNA produced by virally infected cells, which ultimately leads to global inhibition of protein synthesis that blocks viral proliferation [42]. The unique feature of Oasld, Oaslc, Oasle, and Oas1h genes is their restricted expression to oocytes [27, 43]. In addition, Oasld, Oaslc, Oasle, and Oaslh comprise a subfamily of OAS proteins that can bind double-stranded RNA but lack OAS activity [43]. It therefore appears that these oocyte-specific OASs act by blocking OASs involved in interferon response and protect oocyte depletion from interferon-induced cell death, a property that oocytes share with embryonic stem cells [44]. Oasld, Oaslc, Oasle, and Oaslh proteins may therefore act to blunt oocytes' responses to an inflammatory milieu that characterizes folliculogenesis and ovulation, and therefore to stem oocvte loss to interferon-like responses. All four oocyte-specific OASs are downregulated in Nobox knockout newborn ovaries (Fig. 1, A and B), and it is tempting to speculate that such downregulation predisposes Nobox-deficient oocytes to premature death. Our findings that oocyte-specific OASs and NLRP proteins are downregulated in Nobox-deficient mice may signify that OAS and NLRP proteins play critical functions in oocyte survival. Bax, Bcl2l2, and Casp2 expressions do not significantly differ between

FIG. 2. Differential expression of select genes in wild-type (WT) and *Nobox* knockout ovaries. **A**) Semiquantitative RT-PCR on cDNA synthesized from WT and *Nobox* knockout (–/–) ovaries with oligonucleotides corresponding to specific genes. **B**) In situ hybridization with *Oas1d*, *Nlrp14*, *Nlrp4f*, and *AU016322* riboprobes on newborn WT and *Nobox* knockout ovaries. Bright field images are on the left, and dark field images are shown on the right. Germ cell cysts (GCC), primordial follicles (PF), and primary follicles (PrF) are indicated with arrows on the dark field images. Original magnification ×20.

Nobox knockout and wild-type ovaries (Fig. 2A), and oocytespecific OAS proteins and NLRP proteins may be more important than other members of the classic apoptotic pathways in regulating oocyte death and survival.

Nobox Binding Elements Discovered with Protein-Binding Microarray

We used protein-binding microarrays to identify nucleotide motifs that NOBOX homeodomain preferentially binds [14, 23, 24]. NOBOX homeodomain was expressed as a GST fusion protein, and affinity to all possible 10-mers was assessed by protein binding microarrays. A position weight matrix shows a consensus for NOBOX-binding sequence (Fig. 3A). We analyzed 2 kb of nucleotide sequences upstream of genes downregulated more than 5-fold in the *Nobox* knockout ovaries for the presence of NOBOX DNA-binding sequences discovered by the protein-binding microarray. We have previously shown that NOBOX can bind these elements in the promoters of *Gdf9* and *Pou5f1* promoters [26]. In addition to *Gdf9* and *Pou5f1*, a number of other downregulated genes, including *Nlrp14*, *Nlrp4c*, and *Sall4*, as well as secretory molecules *Oosp1* and *Astl*, contain NOBOX DNA-binding sequences (Fig. 3C).

Among downregulated genes that contain NOBOX-binding elements is *Olfr976*. *Olfr976* is an olfactory-like receptor preferentially expressed in oocytes [27] and downregulated more than 5-fold in the *Nobox* knockout ovaries. Olfactory receptors have been described in spermatozoa [45], although their precise role in sperm chemotaxis is unknown. Unlike testicular olfactory receptors, little is known about olfactory receptors in oogenesis, and expression of *Olfr976* in the cell type specific fashion argues that it may have an important function in the biology of the oocyte. Whether *Olfr976* acts during folliculogenesis or as a maternal effect gene is not known.

FIG. 3. Nobox binding elements determined by protein binding microarray and potential gene targets. A) NOBOX binding motif determined by position weight matrix. B) Top ten 8-mer sequences bound by NOBOX. C) List of genes that are downregulated in *Nobox* knockout ovaries and contain NOBOX binding motif within 2 kb upstream of the transcription initiation sites.

Genes Upregulated in Nobox-Deficient Ovaries

We analyzed genes that are significantly upregulated in the Nobox knockout ovaries (Table 2). The number of genes preferentially expressed in germ cells that were upregulated more than 5-fold was 15%, compared with 74% that were downregulated. A number of genes that are normally not expressed in wild-type newborn ovaries are significantly expressed in Nobox knockout newborn ovaries. Dmrt1, doublesex, and mab-3-related transcription factor 1 are not expressed in wild-type newborn ovaries. Dmrt1 is exclusively expressed in the somatic component of the genital ridge prior to sexual differentiation and plays a critical role in male gonadal development [46, 47]. Dmrt1 is overexpressed in Nobox knockout ovaries, which argues that oocyte-specific transcription factor NOBOX can repress male-determining gene expression (Fig. 1H). Other genes preferentially expressed in testes, such as Tekt2, 1110020C03Rik, and 1700019D03Rik [27], are upregulated more than 5-fold in the Nobox knockout compared with the wild-type ovary (Table 2). Tekt2 is essential for male fertility [48], whereas the roles of 1110020C03Rik and 1700019D03Rik are unknown. Other male-determining genes such as Wt1, Dhh, Sox9, Gata4, and Fgf9, do not show significant differences between the wild-type and *Nobox* knockout ovaries. Dmrtl is expressed in germ cells, unlike other sex-determining genes such as Sox9 and Gata4, whose expression is confined to the somatic cells [49]. Dmrt1, Tekt2, and 1700019D03Rik are preferentially expressed in adult testis germ cells [27] and contain NOBOX-binding elements upstream of the transcription initiation sites.

Reexpression of male-determining genes has been observed in *Foxl2* knockout ovaries [50]. *Foxl2* is preferentially expressed in the pregranulosa and granulosa soma of the ovary and causes BPES I and II syndromes [51]. Our results indicate that transcription factors preferentially expressed in oocytes may repress male-determining gene expression.

The LH-responsive hydroxysteroid (17-beta) dehydrogenase 2 (*Hsd17b2*) is not significantly expressed in newborn mouse ovaries, but in the *Nobox* knockout ovaries *Hsd17b2* expession

TABLE 3. Most abundant miRNAs in newborn ovaries.

MicroRNA	Wild-type	Nobox knockout
mmu-miR-709	64820.77 ± 280	42607.40 ± 373
mmu-miR-199a	43258.45 ± 445	37270.72 ± 700
mmu-miR-26a	42654.28 ± 424	39237.99 ± 1350
mmu-let-7a	39375.93 ± 430	37097.84 ± 370
mmu-let-7c	34688.28 ± 262	33247.38 ± 361
mmu-miR-125b	34028.07 ± 377	34136.80 ± 129
mmu-let-7f	33521.84 ± 296	31219.44 ± 670
mmu-miR-214	33381.03 ± 454	31035.26 ± 840
mmu-let-7d	30847.33 ± 484	28948.56 ± 337
mmu-miR-125a	30349.96 ± 285	29061.93 ± 306
mmu-let-7b	29439.24 ± 280	28293.15 ± 798
mmu-let-7e	29407.07 ± 352	27413.03 ± 568
mmu-miR-26b	25546.49 ± 277	24086.31 ± 738
mmu-let-7g	25465.95 ± 313	23758.09 ± 165
mmu-miR-126–3p	23983.26 ± 280	23751.91 ± 146
mmu-miR-689	23526.88 ± 502	20545.65 ± 303
mmu-let-7i	23438.35 ± 198	22021.38 ± 462
mmu-miR-335	22889.06 ± 347	21242.61 ± 475
mmu-miR-23b	20165.20 ± 346	23919.92 ± 399
mmu-miR-690	19935.90 ± 362	19297.05 ± 269

rises more than 5-fold. *Hsd17b2* plays an important role in the interconversion of estradiol and estrone. It therefore appears that the wild-type postnatal oocyte represses expression of *Hsd17b2* either directly or indirectly. The overexpression of mainly somatic genes in the *Nobox* knockout ovary likely represents a homeostatic response to the globally dysfunctional oocytes and disrupted signaling pathways.

MicroRNA Expression in Nobox-Deficient Ovaries

MicroRNAs (miRNAs) are known to play important functions in vertebrate differentiation and development. Micro-RNAs are usually 21–25 nucleotides long and appear to regulate mRNA functions on various levels, including translation [52]. Little is known about miRNA expression in newborn mouse ovaries or transcriptional regulators that control miRNA expression. We therefore studied whether miRNA expression in Nobox knockout ovaries differs significantly from that in wild-type newborn ovaries. We performed microarray analysis on 373 known mouse miRNAs, which represent known miRNA transcripts from the Sanger miRBase Release 9.0 [53]. A total of 177 of 373 miRNAs were significantly expressed in wild-type mouse newborn ovaries (signal greater than 250). The most abundant miRNAs include mir-709, which was recently detected as a novel miRNA during microRNA profiling of mouse embryos [54]. Let-7, a founding member of the miRNA family, is critical in cell fate determination in Caenorhabditis elegans [55]. Let-7 miRNA family transcripts are highly expressed in the newborn ovary (Table 3). An approximately 2-fold decrease in the Nobox knockout compared with wild-type ovaries was shown in mir-801, let-7d, mir-346, and mir-699 (Table 4). Changes in miRNA are relatively small compared with *Nobox* effects on the mRNA expression. Comprehensive sequencing of miRNA transcripts in various tissues is ongoing, and mouse oocyte miRNA transcriptome is currently unknown. Tissue-specific miRNAs exist [56], and oocyte-specific miRNAs are therefore likely.

DISCUSSION

The microarray analysis of the wild-type and *Nobox* knockout newborn ovary reveals disruption in the expression of many germ cell-specific genes, with wide-ranging functions,

TABLE 4. Differentially expressed miRNAs.

MicroRNA	Fold change	Wild-type	Nobox knockout
mmu-miR-801	-2.2	195 ± 30	88 ± 15
mmu-let-7d	-1.9	1361 ± 211	744 ± 113
mmu-miR-346	-1.8	1703 ± 217	919 ± 107
mmu-miR-699	-1.8	238 ± 26	134 ± 18
mmu-miR-200c	1.7	383 ± 39	640 ± 75
mmu-miR-122a	-1.6	520 ± 65	304 ± 49
mmu-miR-709	-1.5	66422 ± 3635	42963 ± 3487
mmu-miR-451	1.5	4497 ± 315	6463 ± 507
mmu-miR-30e	1.4	1625 ± 171	2289 ± 240
mmu-miR-301	1.4	1239 ± 98	1671 ± 137
mmu-miR-374-5p	-1.4	4441 ± 309	3489 ± 311
mmu-miR-671	-1.4	5526 ± 312	3875 ± 297
mmu-miR-350	1.4	829 ± 114	1066 ± 131
mmu-miR-720	1.3	1187 ± 49	1584 ± 89
mmu-miR-199b	1.3	2283 ± 116	3001 ± 310
mmu-miR-98	-1.3	5266 ± 1083	4066 ± 838
mmu-miR-805	-1.3	4992 ± 405	3972 ± 411
mmu-miR-495	-1.3	2989 ± 218	2305 ± 274
mmu-miR-99a	1.3	6698 ± 502	8426 ± 582
mmu-miR-30a-5p	1.3	8287 ± 543	9496 ± 736

many novel and yet uncharacterized. The function of a large subset of these germ cell-specific genes, such as *Nlrp14*, *Nlrp4f* and *Nlrp4c*, *Olfr976*, and *Astl*, remains to be determined. Some of these genes may function as maternal effect genes and, as such, play little of a role in early folliculogenesis. Other genes, such as *Gdf9* and *Bmp15*, which are downregulated in *Nobox* knockouts, play significant roles during the growth phase of ovarian follicles [34, 57].

Pluripotency genes *Sall4* and *Pou5f1* are expressed early during oogenesis. Whether these transcription factors are necessary for folliculogenesis or postfertilization is unknown. Mammalian oocytes can differentiate into many tissue types via parthenogenesis [58], and therefore molecules such as *Sall4* and *Pou5f1* may be important mediators of oocyte's totipotency. Whether other unknown molecules are distinctly necessary for oocyte totipotency versus embryonic stem cell pluripotency remains to be determined.

Using protein-binding microarrays we have discovered 8mer sequences that NOBOX homeodomain preferentially binds. The top ten 8-mer sequences can be found in 18 (49%) of the 37 most downregulated genes and include genes such as Sall4, oocyte-specific Nlrp genes, Pou5f1, and Olfr976. Whether these elements are functional is difficult to assess due to the lack of oocyte cell lines. We have previously reported that *Pou5f1* and *Gdf9* promoters can bind NOBOX by immunoprecipitating wild-type newborn ovary chromatin using anti-NOBOX antibodies and amplifying genomic regions corresponding to putative NOBOX binding sites in the Pou5fl and Gdf9. It is therefore likely that a number of potential NOBOX binding sites are functional. Preferential downregulation of numerous oocyte-specific genes in Nobox-deficient ovaries indicates that NOBOX is a transcriptional activator of oocyte-specific gene expression.

Genes essential to female determination are not well understood. Both somatic and germline components are likely to play key roles in ovarian determination. *Foxl2* is a transcription factor preferentially expressed in pregranulosa and granulosa cells in the mammalian ovary, and its deficiency causes ovarian failure as well as reexpression of genes such as *Sox9*, *Fgf9*, and *Dmrt1* [50]. It is unclear whether *Foxl2* is truly required for commitment to ovarian differentiation, or whether observed reexpression of male-determining genes in *Foxl2*-deficient ovaries results from general response to disrupted oocyte development. Unlike *Foxl2*, *Nobox* is exclusively expressed in oocytes [12]. Reexpression of Dmrt1 (>10-fold increase over wild-type newborn ovary) in the *Nobox* newborn knockout ovaries, which still contain many oocytes, indicates that oocyte-specific transcription pathways also play a key role in repressing male sexual differentiation pathways. The role of germ cell-specific transcription factors in sexual differentiation is poorly understood [59]. Identification and characterization of transcription factors that act upstream of *Nobox* will help delineate early germ cell-specific pathways that contribute to the molecular basis of ovarian determination.

ACKNOWLEDGMENT

We thank Stephanie Pangas for critical reading of the manuscript.

REFERENCES

- Pedersen T, Peters H. Proposal for a classification of oocytes and follicles in the mouse ovary. J Reprod Fertil 1968; 17:555–557.
- Pepling ME, Spradling AC. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol 2001; 234: 339–351.
- Nilsson EE, Kezele P, Skinner MK. Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol 2002; 188:65–73.
- Kezele P, Nilsson EE, Skinner MK. Keratinocyte growth factor acts as a mesenchymal factor that promotes ovarian primordial to primary follicle transition. Biol Reprod 2005; 73:967–973.
- Nilsson E, Parrott JA, Skinner MK. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol 2001; 175:123–130.
- Dissen GA, Romero C, Hirshfield AN, Ojeda SR. Nerve growth factor is required for early follicular development in the mammalian ovary. Endocrinology 2001; 142:2078–2086.
- Ojeda SR, Romero C, Tapia V, Dissen GA. Neurotrophic and cell-cell dependent control of early follicular development. Mol Cell Endocrinol 2000; 163:67–71.
- Parrott JA, Skinner MK. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology 1999; 140:4262–4271.
- Choi Y, Rajkovic A. Genetics of early mammalian folliculogenesis. Cell Mol Life Sci 2006; 63:579–590.
- Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci U S A 2002; 99:2890–2894.
- Soyal SM, Amleh A, Dean J. FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development 2000; 127: 4645–4654.
- Suzumori N, Yan C, Matzuk M, Rajkovic A. Nobox is a homeoboxcontaining gene preferentially expressed in primordial and growing oocytes. Mech Dev 2001; 111:137–141.
- Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 2004; 305:1157–1159.
- Berger MF, Philippakis AA, Qureshi AM, He FS, Estep PW 3rd, Bulyk ML. Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol 2006; 24: 1429–1435.
- Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4:249–264.
- Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19:185–193.
- Smyth GK, Michaud J, Scott HS. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 2005; 21:2067–2075.
- Jain N, Thatte J, Braciale T, Ley K, O'Connell M, Lee JK. Local-poolederror test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics 2003; 19:1945–1951.
- Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 1995; 57: 289–300.
- 20. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC,

Lempicki RA. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003; 4:P3.

- 21. Rajkovic A, Matzuk M. Functional analysis of oocyte-expressed genes using transgenic models. Mol Cell Endocrinol 2001; 187:5–9.
- 22. Albrecht U, Eichele G, Helms JA, Lu HC. Visualization of gene expression patterns by *in situ* hybridization. In: Daston GP (ed.), Molecular and Cellular Methods in Developmental Toxicology. Boca Raton: CRC Press; 1997:23–48.
- Mukherjee S, Berger MF, Jona G, Wang XS, Muzzey D, Snyder M, Young RA, Bulyk ML. Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat Genet 2004; 36:1331– 1339.
- Berger MF, Bulyk ML. Protein binding microarrays (PBMs) for rapid, high-throughput characterization of the sequence specificities of DNA binding proteins. Methods Mol Biol 2006; 338:245–260.
- 25. Watkins WJ, Umbers AJ, Woad KJ, Harris SE, Winship IM, Gersak K, Shelling AN. Mutational screening of FOXO3A and FOXO1A in women with premature ovarian failure. Fertil Steril 2006; 86:1518–1521.
- Choi Y, Rajkovic A. Characterization of NOBOX DNA binding specificity and its regulation of Gdf9 and Pou5f1 promoters. J Biol Chem 2006; 281:35747–35756.
- 27. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, Moqrich A, Patapoutian A, Hampton GM, et al. Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci U S A 2002; 99:4465–4470.
- Lampron C, Rochette-Egly C, Gorry P, Dolle P, Mark M, Lufkin T, LeMeur M, Chambon P. Mice deficient in cellular retinoic acid binding protein II (CRABPII) or in both CRABPI and CRABPII are essentially normal. Development 1995; 121:539–548.
- Baltus AE, Menke DB, Hu YC, Goodheart ML, Carpenter AE, de Rooij DG, Page DC. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet 2006; 38: 1430–1434.
- Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998; 95:379–391.
- Pesce M, Wang X, Wolgemuth DJ, Scholer H. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech Dev 1998; 71:89–98.
- 32. Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, Lou Y, Yang J, Ma Y, Chai L, Ng HH, Lufkin T, et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 2006; 8:1114–1123.
- Richards M, Tan SP, Tan JH, Chan WK, Bongso A. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 2004; 22:51–64.
- Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis [see comments]. Nature 1996; 383:531–535.
- Quesada V, Sanchez LM, Alvarez J, Lopez-Otin C. Identification and characterization of human and mouse ovastacin: a novel metalloproteinase similar to hatching enzymes from arthropods, birds, amphibians, and fish. J Biol Chem 2004; 279:26627–26634.
- Yan C, Pendola FL, Jacob R, Lau AL, Eppig JJ, Matzuk MM. Oosp1 encodes a novel mouse oocyte-secreted protein. Genesis 2001; 31:105– 110.
- Tong ZB, Gold L, Pfeifer KE, Dorward H, Lee E, Bondy CA, Dean J, Nelson LM. Mater, a maternal effect gene required for early embryonic development in mice. Nat Genet 2000; 26:267–268.
- Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R, Bagga R, Kircheisen R, Ao A, Ratti B, Hanash S, Rouleau GA, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet 2006; 38:300–302.
- Hamatani T, Falco G, Carter MG, Akutsu H, Stagg CA, Sharov AA, Dudekula DB, VanBuren V, Ko MS. Age-associated alteration of gene expression patterns in mouse oocytes. Hum Mol Genet 2004; 13:2263– 2278.
- 40. Horikawa M, Kirkman NJ, Mayo KE, Mulders SM, Zhou J, Bondy CA,

Hsu SY, King GJ, Adashi EY. The mouse germ-cell-specific leucine-rich repeat protein NALP14: a member of the NACHT nucleoside triphos-phatase family. Biol Reprod 2005; 72:879–889.

- Westerveld GH, Korver CM, van Pelt AM, Leschot NJ, van der Veen F, Repping S, Lombardi MP. Mutations in the testis-specific NALP14 gene in men suffering from spermatogenic failure. Hum Reprod 2006; 21:3178– 3184.
- Player MR, Torrence PF. The 2–5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol Ther 1998; 78:55–113.
- 43. Yan W, Ma L, Stein P, Pangas SA, Burns KH, Bai Y, Schultz RM, Matzuk MM. Mice deficient in oocyte-specific oligoadenylate synthetaselike protein OAS1D display reduced fertility. Mol Cell Biol 2005; 25: 4615–4624.
- Burke DC, Graham CF, Lehman JM. Appearance of interferon inducibility and sensitivity during differentiation of murine teratocarcinoma cells in vitro. Cell 1978; 13:243–248.
- Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, Hatt H. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 2003; 299:2054–2058.
- Raymond CS, Murphy MW, O'Sullivan MG, Bardwell VJ, Zarkower D. Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 2000; 14:2587–2595.
- 47. De Grandi A, Calvari V, Bertini V, Bulfone A, Peverali G, Camerino G, Borsani G, Guioli S. The expression pattern of a mouse doublesex-related gene is consistent with a role in gonadal differentiation. Mech Dev 2000; 90:323–326.
- 48. Tanaka H, Iguchi N, Toyama Y, Kitamura K, Takahashi T, Kaseda K, Maekawa M, Nishimune Y. Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol Cell Biol 2004; 24:7958–7964.
- Pask AJ, Behringer RR, Renfree MB. Expression of DMRT1 in the mammalian ovary and testis—from marsupials to mice. Cytogenet Genome Res 2003; 101:229–236.
- Ottolenghi C, Omari S, Garcia-Ortiz JE, Uda M, Crisponi L, Forabosco A, Pilia G, Schlessinger D. Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet 2005; 14:2053–2062.
- Crisponi L, Deiana M, Loi A, Chiappe F, Uda M, Amati P, Bisceglia L, Zelante L, Nagaraja R, Porcu S, Ristaldi MS, Marzella R, et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 2001; 27:159–166.
- Ke XS, Liu CM, Liu DP, Liang CC. MicroRNAs: key participants in gene regulatory networks. Curr Opin Chem Biol 2003; 7:516–523.
- Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006; 34:D140–D144.
- Mineno J, Okamoto S, Ando T, Sato M, Chono H, Izu H, Takayama M, Asada K, Mirochnitchenko O, Inouye M, Kato I. The expression profile of microRNAs in mouse embryos. Nucleic Acids Res 2006; 34:1765–1771.
- 55. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000; 408:86–89.
- Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004; 432: 226–230.
- 57. Galloway SM, McNatty KP, Cambridge LM, Laitinen MP, Juengel JL, Jokiranta TS, McLaren RJ, Luiro K, Dodds KG, Montgomery GW, Beattie AE, Davis GH, et al. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosagesensitive manner. Nat Genet 2000; 25:279–283.
- Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, Park ES, Seo JS, Ogawa H. Birth of parthenogenetic mice that can develop to adulthood. Nature 2004; 428:860–864.
- Pangas SA, Choi Y, Ballow DJ, Zhao Y, Westphal H, Matzuk MM, Rajkovic A. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8. Proc Natl Acad Sci U S A 2006; 103: 8090–8095.