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DNA-binding proteins have key roles in many cellular

processes, including transcriptional regulation and replication.

Microarray-based technologies permit the high-throughput

identification of binding sites and enable the functional roles of

these binding proteins to be elucidated. In particular, microarray

readout either of chromatin immunoprecipitated DNA-bound

proteins (ChIP-chip) or of DNA adenine methyltransferase fusion

proteins (DamID) enables the identification of in vivo genomic

target sites of proteins. A complementary approach to analyse

the in vitro binding of proteins directly to double-stranded DNA

microarrays (protein binding microarrays; PBMs), permits rapid

characterization of their DNA binding site sequence specificities.

Recent advances in DNA microarray synthesis technologies

have facilitated the definition of DNA-binding sites at much

higher resolution and coverage, and advances in these and

emerging technologies will further increase the efficiencies of

these exciting new approaches.
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Introduction
DNA-binding proteins perform a variety of important

functions in cells, including transcriptional regulation,

chromosome maintenance, replication and DNA repair.

The interactions between transcription factors (TFs) and

their DNA-binding sites are of particular interest, as these

interactions control crucial steps in development and

responses to environmental stresses. Moreover, in

humans the dysfunction of TFs can contribute to the

progression of various diseases. Also of significant interest

is the location of histones and their post-translational

modifications, as they too contribute significantly to gene

regulation. The labor involved in traditional techniques
COBIOT 370

www.sciencedirect.com
for examining the DNA-binding sites of proteins limits

analysis to a fairly small number of DNA sequences.

DNA microarrays [1,2] together with the availability of

whole-genome sequences have revolutionized mRNA

expression analysis and, more recently, have facilitated

biochemical and functional genomics studies of DNA-

binding proteins. Chromatin immunoprecipitation of a

protein of interest followed by microarray-based detection

of enriched DNA fragments, referred to as ‘ChIP-chip’ or

‘genome-wide location analysis’, is currently the most

widely used method for identifying in vivo TF-binding

sites in a high-throughput manner [3–6]. An alternative

microarray-based approach for the genome-scale identifi-

cation of in vivo binding sites utilizes a DNA-binding

protein fused to DNA adenine methyltransferase (Dam),

which marks DNA near the protein’s target sites [7]. The

protein-binding microarray (PBM) technology permits

rapid, high-throughput characterization of the in vitro
DNA-binding specificities of DNA-binding proteins by

assaying their binding to double-stranded DNA microar-

rays [8,9,10��].

Advances in DNA microarray synthesis technology have

increased feature (spot) density, which has allowed higher

resolution definition of in vivo target sites and greater

coverage of genomic sequence space. Such advances have

also permitted a larger fraction of sequence space to be

assayed in vitro by PBMs. Because the ChIP-chip and

DamID technologies and early studies using these tech-

niques have been described in depth in several recent

reviews [11–13], this review will focus primarily on recent

studies that included technological improvements. This

review will also focus on PBM technology, which pre-

viously has not been reviewed. Table 1 provides a com-

parison of the three technologies: ChIP-chip, DamID and

PBM.

ChIP-chip
In ChIP-chip, cells are treated with a reagent, typically

formaldehyde, which creates covalent crosslinks between

protein and DNA. An antibody specific for a protein of

interest is then used to immunoprecipitate protein-bound

DNA fragments, which are subsequently labeled in an

amplification reaction and hybridized to DNA microar-

rays to identify the protein-bound fragments (Figure 1).

Initial ChIP-chip studies were performed on Saccharo-
myces cerevisiae regulatory TFs [3–6] and on replication

origin recognition proteins [14], using microarrays spotted

with PCR amplicons covering essentially all intergenic

regions in yeast. Studies of yeast TFs in multiple cellular
Current Opinion in Biotechnology 2006, 17:1–9
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2 Protein technologies

Table 1

Comparison of ChIP-chip, DamID and PBM technologies

Technology Advantages Disadvantages

ChIP-chip In vivo Typically requires a protein-specific antibody, which may be a

challenge to obtain

Provides a snapshot of DNA interactions in a given cell

type under the examined cellular conditions

To obtain enrichment of bound fragments, experiments must be

performed in cellular conditions under which the protein of

interest is expressed, nuclear, and regulating its target genes

Use of modification-specific antibodies permits the

identification of genomic sites associated with a protein

containing a particular post-translational modification

Might require a potentially limiting tissue source

Identifies genomic sites associated either directly or

indirectly (via protein–protein interactions) with the protein

Even with the use of densely tiled oligonucleotide arrays,

difficulties in reducing the size of immunoprecipitated DNA

ragments limit resolution of DNA-binding site identification

DamID In vivo Requires slight overexpression of the protein because of

expression of the fusion protein

Provides a snapshot of DNA interactions in a given cell

type under the examined cellular conditions

The fusion protein might not exhibit the same binding properties

as the endogenous protein

Does not require a protein-specific antibody To obtain enrichment of bound fragments, experiments must be

performed in cellular conditions under which the protein of

interest is expressed, nuclear, and regulating its target genes

Could identify genomic sites associated either directly or

indirectly (via protein–protein interactions) with the protein

Currently does not permit direct identification of genomic sites

associated with a protein containing a particular post-

translational modification

Might require a potentially limiting tissue source

Resolution has been limited so far to �1 kb owing to the spread

of methylation

PBM Does not require a protein-specific antibody In vitro

Highly rapid Experiments are performed typically at arbitrary protein

concentrations, in arbitrary buffer conditions

Provides a comprehensive survey of DNA-binding site

sequence variants, including data on non-binding

sequences

Requires analysis of additional data types, such as phylogenetic

sequence conservation and gene expression data, in order to

identify which genomic sites are likely to be utilized in vivo

Can have very high binding-site resolution, down to the

exact binding site sequence variant

Observed binding might not correspond to endogenous binding

because of missing cofactors or chromatin context

Fusion protein might not exhibit same binding properties as the

endogenous protein
states [15] or under different environmental conditions

[16�] highlighted that binding of TFs can be condition-

dependent. ChIP-chip has also been used in yeast to

examine TATA-binding protein (TBP) [17], RNA poly-

merase (Pol) II transcription initiation and elongation

apparatuses [18], the RNA Pol III transcription apparatus

[19], and a centromere-related factor [20].

Recent ChIP-chip studies have focused on two main areas:

histone modifications, histone-modifying proteins and

chromatin remodeling; and combinatorial and condition-

specific regulation by TFs. Many recent studies have

utilized arrays of oligonucleotides designed to tile a portion

of the genome (‘tiling arrays’), permitting high-resolution

definition of the genomic binding sites of a given protein.

ChIP-chip studies to analyse histone modifications

and histone-modifying proteins

A recent study provided high-resolution mapping of the

positions of nucleosomes (i.e. the chromosomal packing

unit of DNA wrapped around a histone core) in yeast. This
Current Opinion in Biotechnology 2006, 17:1–9
was accomplished by the purification of mononucleosomal

DNA (i.e. DNA from a single nucleosome) resulting from a

digestion of genomic DNA with micrococcal nuclease, and

the use of microarrays printed with 50-mer oligonucleo-

tides tiled every 20 bp across almost all of yeast chromo-

some III and �1 kb of 230 additional promoters.

Interestingly, Rando and colleagues [21��] observed

nucleosome-free regions of �150 bp located �200 bp

upstream of many annotated coding regions, possibly to

permit accessibility of the intergenic DNA to regulatory

TFs; this finding is consistent with a previous study by

Lieb and colleagues [22] who found decreased nucleo-

some occupancy at active promoters. In contrast to other

studies in which data from PCR amplicon arrays suggested

the existence of a discrete, complex, combinatorial ‘his-

tone code’, Rando and colleagues observed a continuous

pattern of modifications across nucleosomes, suggesting a

simpler, redundant ‘code’ [23��]. Interestingly, the histone

variant H2A.Z was found to occur at the transcription start

sites of most genes, including those at undetectable tran-

scription levels, suggesting a mechanism for marking the 50
www.sciencedirect.com
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Figure 1

ChIP-chip. (a) Types of DNAs used in ChIP-chip. Oligonucleotides tiling genomic regions (left); PCR-amplified genomic regions (right).

(b) ChIP-chip experimental design. A large variety of protein–DNA and protein–protein crosslinks are created nonspecifically, owing to the

nonspecific nature of formaldehyde crosslinking. An antibody (orange) either specific for the protein of interest (blue) or specific for an epitope

tag fused to the protein of interest is used in immunoprecipitation (IP) in the experimental sample. This IP will enrich for the target protein,

including protein directly bound to genomic DNA-binding sites, and also for protein indirectly associated with DNA via protein–protein interactions.

A control (‘mock’) IP is performed using either no antibody, an irrelevant antibody or pre-immune IgG antibodies. This mock IP is not expected

to enrich for the target protein of interest.
ends of both active and inactive genes [24]. A separate

study used an Agilent DNA microarray containing

�44 000 60-mer oligonucleotides covering most of the

yeast genome at an average probe density of 266 bp to

map histone acetylation and methylation at high resolution

[25]. In another study, histone methylations in mouse

embryonic stem cells were mapped using Affymetrix

arrays custom-designed to tile noncoding regions that

are highly conserved over mammalian genomes and
www.sciencedirect.com
may be important for gene regulation during development

[26]. ChIP-chip studies of chromatin and its epigenetic

modifications are described in a recent review [12], so are

not discussed in detail here.

ChIP-chip studies to analyse transcription factor

binding

The construction of microarrays for genome-scale ChIP-

chip studies in metazoans has been a significant challenge
Current Opinion in Biotechnology 2006, 17:1–9
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owing to the increased size of these genomes. Early ChIP-

chip studies in mammalian genomes utilized various

types of PCR amplicon arrays, including arrays tiling a

specific genomic region of interest [27], CpG island arrays

[28], and promoter arrays [29]. Promoter arrays covering

roughly �750 bp to +250 bp relative to transcription start

sites have been used to analyze binding of human nuclear

factor 1a (HNF1a), HNF4a, and HNF6 in post-mortem

human liver and pancreas [30]. These arrays were also

used to study the muscle regulatory TFs MyoD, myo-

genin and MEF2 (myocyte enhancer factor-2) in differ-

entiating murine C2C12 skeletal muscle cells [31].

The definition of in vivo binding sites at higher resolution

has resulted largely from the switch to oligonucleotide

tiling arrays. In a study using the oligonucleotide tiling

arrays of Rando and colleagues [21��], the nuclear pore

associated protein Mlp1 was found to associate with a-

factor-induced genes in an RNA-dependent manner,

suggesting a mechanism for chromosome conformational

changes in response to the a-factor mating pheromone

[32�]. In another study, a 10-slide set of Agilent 60-mer

oligonucleotide arrays covering�8 kb to +2 kb relative to

the transcript start sites for nearly 18 000 human genes,

was used to identify binding sites in human embryonic

stem (ES) cells for the TFs OCT4, SOX2 and NANOG,

which are important in ES cell renewal and maintenance

of pluripotency [33��]. Even though important regulatory

interactions can occur in promoters, a study using Affy-

metrix arrays representing essentially all nonrepetitive

sequences on human chromosomes 21 and 22 found that

most binding sites for the TFs Sp1, cMyc and p53 were

located far from the transcription start sites of known

protein-coding genes [34��].

ChIP-chip using anti-RNA Pol II and anti-TBP-asso-

ciated factor 1 antibodies to isolate pre-initiation com-

plexes from four human cell lines has enabled improved

promoter mapping [35]. In a follow-up study, Ren and

colleagues [36��] mapped promoters in the entire human

genome using a set of 38 NimbleGen arrays containing

roughly 14.5 million 50-mer oligonucleotides, designed to

represent all non-repetitive DNA throughout the human

genome at 100 bp resolution. Interestingly, the authors

found that a large number of genes contained two or more

active promoters, and also defined a set of 1239 putative

promoters that correspond to previously unannotated

transcription units.

Limitations of ChIP-chip technology

A major limitation in applying ChIP-chip to other model

organisms has been the availability of suitable microar-

rays. Using a PCR amplicon array tiling Drosophila chro-

mosome arm 2L, Bell and colleagues [37�] found that sites

of active transcription correlated with binding by the

origin recognition complex and early replicating origins.

Such arrays have also been used to examine heat shock
Current Opinion in Biotechnology 2006, 17:1–9
factor binding in Drosophila embryos [38]. NimbleGen

60-mer arrays tiling over 36 Mb of the Drosophila genome

at 100 bp resolution have also been used [39]. Binding by

Escherichia coli TFs has been examined using off-the-shelf

Affymetrix E. coli antisense arrays [40], whereas Nimble-

Gen tiling arrays have been used to map E. coli RNA Pol

binding sites [41].

Changes in the crosslinking procedure have also led to

improvements in ChIP-chip. To improve the efficiency of

crosslinking when formaldehyde treatment alone did not

result in significant enrichment in ChIP of the histone

deacetylase and repressor Rpd3, cells were first treated

with dimethyl adipimidate, a protein–protein crosslinking

reagent, and then with formaldehyde to create protein–

DNA crosslinks [42].

Despite all the benefits of identifying in vivo binding

locations, ChIP has some inherent caveats that can make

the identification of DNA-binding sites difficult [43]. In

particular, both antibody limitations and condition-spe-

cific protein binding can result in ChIP experiments that

do not provide significant enrichment of bound fragments

in the immunoprecipitated sample [16�,43].

DamID
In the DamID approach, the protein of interest is over-

expressed in vivo from a plasmid as a fusion to Dam.

Wherever the protein binds DNA, Dam will methylate

adenines within GATC sites in the vicinity of the binding

sites. The methylated sites in the experimental versus

control (Dam alone) samples are detected by digestion

with a methyl-specific restriction enzyme, amplification,

labeling and hybridization to a microarray (Figure 2).

DamID has been used to identify in vivo binding sites

in Drosophila [7] and Arabidopsis [44]. Following this

approach, binding sites for sequence-specific TFs [45],

DNA methyltransferase [44], chromatin [7] and chroma-

tin-associated proteins have been identified using cDNA

or PCR amplicon arrays and, more recently, NimbleGen

60-mer tiling arrays [46�].

Comparison of ChIP-chip and DamID indicates that these

two methods for mapping in vivo TF-binding sites can

yield very similar results [47]. DamID has the advantage

that it does not require a TF-specific antibody; however,

DamID is performed using slight overexpression of a

tagged TF from a plasmid, raising concerns that even this

slight increase in TF concentration might result in arti-

factual binding at non-native binding sites. In addition,

DamID is not suitable for the detection of post-transla-

tional modifications. Finally, DamID does not permit

high-resolution mapping of binding sites, because methy-

lation by the tethered Dam can extend over a few kilobases

from the TF-binding site [7]. The advantages and dis-

advantages of DamID and papers using DamID are dis-

cussed in-depth in a recent review [13].
www.sciencedirect.com
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Figure 2

DamID. (a) Types of DNAs used in DamID microarray hybridizations. Oligonucleotides tiling genomic regions (left); cDNAs or PCR-amplified

genomic regions (right). (b) DamID experimental design. The protein of interest (blue) is overexpressed in vivo from a plasmid as a fusion to

Dam (purple). Wherever the protein binds DNA, Dam will methylate adenines within GATC sites in the vicinity of the binding sites. The methylated

sites are digested with the methyl-specific restriction enzyme DpnI, which cuts only at methylated GATC sites. The smaller DpnI digestion

fragments, corresponding to the methylated regions, are either purified by sucrose gradient centrifugation or specifically amplified using a

methylation-specific PCR protocol. (Panel (b) was adapted from [7] and [51] with permission by Macmillan Publishers Ltd.).
Protein-binding microarrays
The PBM technology permits high-throughput character-

ization of the sequence specificities of DNA–protein inter-

actions in vitro [8,9,10��] (see Figure 3). Briefly, a purified,

epitope-tagged protein is allowed to bind directly to a

double-stranded DNA (dsDNA) microarray. The pro-

tein-bound microarray is then stained with a fluorophore-

conjugated antibody (alternatively, a directly labeled

protein can be used). The protein’s DNA-binding speci-

ficity is determined from the significantly bound spots.

Three types of DNA molecules can be used to construct

the dsDNA array: short double-stranded oligonucleotides

created by primer extension; short double-stranded DNAs

created using self-hairpinning oligonucleotides; and longer
www.sciencedirect.com
double-stranded DNAs resulting from the PCR amplifica-

tion of genomic regions (Figure 3a). Although they do not

assay binding in vivo, PBMs offer several advantages: an in
vitro approach does not require prior knowledge of the

conditions in which a TF binds its genomic sites; PBMs can

provide extensive binding preference data for each DNA

sequence variant; and PBM technology is rapid, allowing

the determination of the DNA-binding specificities of a

purified protein in a single day.

In a proof-of-principle study, Bulyk and colleagues [8]

biochemically converted Affymetrix oligonucleotide

arrays to dsDNA arrays by extension of a universal primer

that was complementary to a universal primer sequence
Current Opinion in Biotechnology 2006, 17:1–9
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Figure 3

Protein binding microarrays (PBMs). (a) Types of DNAs used in PBMs. Short double-stranded oligonucleotides created by primer extension

using a universal primer (red), complementary to a sequence present on spots either on an oligonucleotide array [8] or in solution [9,10��] (left);

regions of short double-stranded DNA created by self-hairpinning oligonucleotides on an oligonucleotide array [50��] (center); longer

double-stranded DNAs resulting from PCR amplification of genomic regions [10��] (right). (b) PBM experimental design. Double-stranded DNA

microarrays can be either bound by an epitope-tagged TF (blue) and labeled by a fluorophore-conjugated (green) antibody specific for the

tag [10��] (left), or bound by a directly fluorophore-labeled TF [50��] (right). (Panel (b) was adapted from [10��] with permission from Nature

Publishing Group.).
present in each oligonucleotide on the array. The authors

observed that the methylation-sensitivity of restriction

enzymes could be detected by the use of dsDNA arrays

treated with Dam methylase.

In the first study to assay TF binding to dsDNA arrays,

Bulyk et al. [9] used a DNA microarray spotted with short

synthetic dsDNAs designed to examine a phage display

library of wild-type and mutant Cys2His2 zinc finger

DNA-binding domains of Zif268 (Egr1). Importantly,

spots with higher signal intensities were found to contain

higher affinity binding sites. In a similar study, Udalova

and colleagues [48] examined the DNA-binding specifi-

cities of Oct-1 and the NF-kB p52 homodimer. As in the

earlier study [9], the correlation of the PBM signal inten-

sities with binding affinity data allowed the authors to

approximate the relative binding affinities for other bind-

ing-site variants.

More recently, Mukherjee et al. [10��] examined

glutathione S-transferase (GST)-tagged yeast TFs using

whole-genome yeast intergenic microarrays spotted with

DNAs resulting from the PCR amplification of genomic

regions. The PBM-derived binding-site motifs for the
Current Opinion in Biotechnology 2006, 17:1–9
TFs Abf1 and Rap1 were highly similar to motifs derived

from ChIP-chip data [43]. Moreover, analysis of PBM

data obtained for Mig1 resulted in the identification of the

Mig1 binding site motif [10��], whereas analysis of the

ChIP-chip data [43] did not. Many of the newly identified

binding sites of these TFs are highly conserved across five

sequenced sensu stricto yeast species and, thus, are poten-

tially regulatory [10��].

The use of microarrays constructed using longer DNAs

obtained from the PCR amplification of genomic regions

has the advantages of covering much sequence space with

relatively few spots and representing TF-binding sites in

the context of their native genomic flanking sequences,

including potential cofactor-binding sites. In a proof-of-

principle study, Doi et al. [49] showed that the TF Jun

with its protein partner Fos bound to microarrays upon

formation of the Jun/Fos heterodimer. However, inherent

in the use of intergenic arrays are two key limitations.

First, the relative binding preferences for each of poten-

tially multiple sites in a given intergenic region are not

readily distinguished. Second, it can be difficult to sepa-

rate the specific versus nonspecific contributions to the

signal intensities for spotted DNAs of variable lengths.
www.sciencedirect.com
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In contrast, microarrays created with short synthetic

dsDNAs representing all possible sequence variants of

a given length (all ‘k-mers’, where k is the length of the

DNA-binding sites to be examined) [8,9,50��] permit the

relative preferences for variant binding site sequences to

be extracted more readily. In one recent study, Warren

et al. created microarrays of 34-mer oligonucleotides, each

containing a 14 bp double-stranded hairpin region. On

these arrays, each possible 8-mer binding site sequence

variant was synthesized at a distinct feature on the array.

The authors used these hairpinned dsDNA arrays to

examine binding by fluorophore-conjugated engineered

polyamides and the Drosophila TF Extradenticle, Cy3-

labeled at a unique cysteine residue [50��]. However, as

the DNA-binding site length (k) to be examined

increases, the number of possible variant binding site

sequences can far exceed the number of spots that can

currently be manufactured on a single microarray. To

overcome this limitation, one could sample binding-site

space instead of exhaustively examining all possible

binding site sequence variants. Alternatively, instead of

devoting a unique spot to each binding-site variant, one

can instead employ a compact universal DNA microarray

design, whereby distinct k-mers are allowed to overlap

within a given DNA probe; for example, there are 31

overlapping 10-mers within 40 bp of dsDNA. Such uni-

versal arrays permit comprehensive examination of all

possible sequence variants of a given length in a space-

and cost-efficient manner (MF Berger, AA Philippakis,

et al., unpublished).

Conclusions
Most TFs in human and various model organisms have

undetermined DNA-binding specificities and their reg-

ulatory functions are not well understood on a genomic

scale. Significant challenges include characterization of

their DNA-binding specificities and determination of the

differential usage of their binding sites in various cell

types — through development and response to cellular

and environmental conditions — and in normal and

disease states. Thus, the target genes of TFs and poten-

tial combinatorial modes of transcriptional regulatory

control will need to be discovered and recent advances

will help us to reach this goal. Continued improvements

in the synthesis of high-density DNA microarrays will

allow even greater coverage of DNA-binding site space.

Furthermore, as more genomes are sequenced and com-

prehensive data on TF-DNA binding are generated, it

will become feasible to examine the co-evolution of TF

protein sequence and their corresponding DNA-binding

sites.
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