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Abstract

Identifying genomic locations of transcription-factor binding sites, particularly in higher eukaryotic
genomes, has been an enormous challenge. Various experimental and computational approaches
have been used to detect these sites; methods involving computational comparisons of related
genomes have been particularly successful.
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The publication of a nearly complete draft sequence of the

human genome is an enormous achievement, but character-

izing the entire set of functional elements encoded in the

human and other genomes remains an immense challenge

[1]. Francis Collins, Director of the National Human Genome

Research Institute (USA), has proposed that “the next phase

of genomics is to catalog, characterize and comprehend the

entire set of functional elements [including those that do not

encode protein] encoded in the human and other genomes”

[1]. Two of the most important functional elements in any

genome are transcription factors (TFs) and the sites within

the DNA to which they bind. These interactions between

protein and DNA control many important processes, such as

critical steps in development and responses to environmen-

tal stresses, and defects in them can contribute to the pro-

gression of various diseases. Much progress has been made

recently in the accumulation and analysis of mRNA tran-

script profiles of a variety of cell and tissue types, including

those associated with various human diseases [2]; much

remains to be understood, however, about the transcrip-

tional regulatory networks that govern these expression pro-

files. A more complete understanding of transcription

factors, their DNA binding sites, and their interactions, will

permit a more comprehensive and quantitative mapping of

the regulatory pathways within cells, as well as a deeper

understanding of the potential functions of individual genes

regulated by newly identified DNA-binding sites. 

The binding specificities of only a small number of TFs are

well characterized. Transcription-factor binding sites (TFBSs)

are usually short (around 5-15 base-pairs (bp)) and they are

frequently degenerate sequence motifs (Figure 1a); potential

binding sites thus can occur very frequently in larger

genomes such as the human genome. The sequence degener-

acy of TFBSs has been selected through evolution and is ben-

eficial, because it confers different levels of activity upon

different promoters, thus causing some genes to be tran-

scribed at higher levels than others, as may be required by

the cell [3]. The function of TFBSs is often independent of

their orientation. In yeast, their position within a promoter

can vary, and in higher eukaryotes they can occur upstream,

downstream, or in the introns of the genes that they regu-

late; in addition, they can be close to or far away from regu-

lated gene(s). Moreover, the human genome is about 200

times larger than yeast genome, and approximately 95-99%

of it does not encode proteins. For all these reasons, it can be

very difficult to find TFBSs in noncoding sequences using

relatively simple sequence-searching tools like BLASTN or

CLUSTALW [4].

Experimental methods for identifying
transcription-factor binding sites
Much of the information on TF binding specificity has

been determined using traditional methodologies such as



footprinting methods that identify the region of DNA pro-

tected by a bound protein, nitrocellulose binding assays, gel-

shift analysis that monitors the change in mobility when DNA

and protein bind, Southwestern blotting of both DNA and

protein, or reporter constructs. These methods are generally

quite time-consuming and not readily scaled up to whole

genomes, however. In recent years, therefore, a number of

high-throughput technologies have been developed, for iden-

tifying TFBSs both in vitro and in vivo. One high-throughput

method for finding high-affinity binding sequences in vitro is

the selection (frequently referred to as SELEX (systematic

evolution of ligands by exponential evolution)) from random-

ized double-stranded DNAs those that bind with high affinity

to a protein of interest [5]. This method has been further

modified into genomic SELEX, which uses a genomic library

as the starting material for the selections [6]. More recently,

the sequence specificities of DNA-binding proteins have been

determined by direct binding of proteins to double-stranded

DNA microarrays [7,8].

Similarly, high-throughput methods have also been devel-

oped for measuring the interactions between DNA and TFs

in vivo. Microarray-based readout of chromatin immuno-

precipitation assays (‘ChIP-chip’), also referred to as

genome-wide location analysis [9], is currently the most

widely used method for identifying genomic TFBSs in vivo

and in a high-throughput manner (see [10] for a review).

This approach has been used to characterize a number of

TFs in the yeast Saccharomyces cerevisiae [9,11-15] and,

more recently, to identify genomic targets in mammalian

cells [16-18]. Another recently developed method that takes

advantage of DNA microarrays for the identification of

TFBSs in vivo uses TFs tethered to DNA adenine methyl-

transferase (Dam) [19,20], resulting in DNA methylation

near sites bound by the TF-Dam fusion protein [19,20]. This

approach has been used to identify binding sites in vivo in

Drosophila [20,21] and Arabidopsis [22]. 

Identifying candidate TFBSs in silico
Once a potential regulatory sequence motif has been identi-

fied, the next goal is frequently to identify candidate target

genes that may be regulated through it, potentially by a TF

that may bind to it. Although degenerate consensus

sequences (Figure 1a) are still frequently used to depict the

binding specificities of TFs, they do not contain precise

information about the relative likelihood of observing the

alternate nucleotides at the various positions of a

TFBS. Thus, a common way of representing the degenerate

sequence preferences of a DNA-binding protein is by a posi-

tion weight matrix (PWM; Figure 1b) [3]. It is important to

note that predicted TFBSs may not serve a direct regulatory

function, or even be bound, in vivo. A number of collections

of experimentally defined TFBSs have therefore been assem-

bled. Genes can also be classified according to whether they

are likely to be regulated through a particular motif or com-

bination of motifs, such as by using Hidden Markov Models

[33] to statistically model the number and relative locations

of TFBSs within a sequence [34].

The prediction and experimental identification of regulatory

regions in higher eukaryotes is more difficult than in model

organisms with smaller genomes. Not only are the genomes

larger, but also a greater proportion of the genomes are non-

coding. In addition, regulatory elements can be found far

from the transcription start site of the genes they regulate,

making the search for them difficult. One method to enrich

for shared sets of candidate regulatory elements is to focus

on the noncoding sequence surrounding genes with very

similar mRNA expression patterns. A number of studies

have been successful in extracting sequence motifs from

expression data or groups of functionally related genes in

yeast [35-39]. This is much more difficult for higher eukary-

otes, however, because the much greater amount of input

sequence that must go into the motif-search algorithms

increases the background noise levels in the motif search.

For these reasons, it has been suggested that comparisons

between genomes be incorporated when searching higher
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Figure 1
Representation of transcription-factor binding sites. (a) An example of six
sequences and the consensus sequence that can be derived from them.
The consensus simply gives the nucleotide that is found most often in
each position; the alternate (or degenerate) consensus sequence gives the
possible nucleotides in each position; R represents A or G; N represents
any nucleotide. (b) A position weight matrix for the -10 region of E. coli
promoters, as an example of a well-studied regulatory element. The
boxed elements correspond to the consensus sequence (TATAAT). The
score for each nucleotide at each position is derived from the observed
frequency of that nucleotide at the corresponding position in the input
set of promoters. The score for any particular site is the sum of the
individual matrix values for that site’s sequence; for example, the score
for TATAAT is 85. Note that the matrix values in (b) do not come from
the example shown in (a) but rather are derived from a much larger
collection of -10 promoter regions. Adapted, with permission, from [3].
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eukaryotic expression clusters for regulatory motifs [40].

Further details of PWMs and collections of experimentally

defined TFBSs are available with the complete version of this

article, online.

Phylogenetic footprinting 
A major method for enriching for candidate regulatory ele-

ments is to identify regions of sequence conservation

between genomes, as it is these conserved regions that are

likely to contain important regulatory sites. This method of

performing phylogenetic comparisons to reveal conserved

cis elements in the noncoding regions of homologous genes

is referred to as ‘phylogenetic footprinting’ [41]. It has been

described as searching for “islands of conserved sequences

in seas of less conserved noncoding sequence” [40]. 

An important first step in phylogenetic footprinting is to

identify orthologs, genes in different species that are derived

from the same gene in the last common ancestral species

and thus usually have similar functions in the genomes

being compared. In contrast, paralogs are duplicate gene

pairs within a genome that have diverged and typically have

different functions. Orthologs need to be distinguished from

paralogs, because it can be expected that as the functions of

paralog has diverged, their transcriptional regulators may

also have diverged. At relatively close evolutionary distances

- divergence around 40-80 million years ago (Mya) - it can

be difficult to distinguish between undiscovered coding

sequences and functional noncoding sequences, so compari-

son with distantly related species can improve the ability to

distinguish these classes of conserved sequences [42]. Frazer

and colleagues [42,43] have reviewed methods for cross-

species sequence comparisons. 

In the initial sequencing and comparative analysis of the

mouse genome, Waterston and colleagues [44] found that a

much higher fraction of short segments in the mammalian

genome are under selection than can be explained by

protein-coding sequences alone. In a comparison of 1

megabase (Mb) of orthologous human and mouse sequences

surrounding three interleukin genes [45], 90 conserved non-

coding sequences were found, of which one has so far been

shown experimentally to regulate the genes. Comparisons

have also been made between the pufferfish and human

genomes [49]; it is important to remember that comparisons

between such distantly related organisms will miss

sequences specific to one lineage. 

The first step in finding upstream TFBSs is to identify the

transcriptional start site, so that searches can be focused on

sequence upstream of 5� untranslated regions; intronic and

transcriptionally downstream sequences are also searched for

TFBSs. Next, either global or local sequence alignments are

performed to identify regions of sequence conservation. It is

important to note that the level of sequence conservation

varies considerably across genomes, so fixed percentage-

identity cutoffs for alignments may not be suitable. TFs asso-

ciated with expression specific to skeletal muscle have been

studied extensively, probably as a result of good cell-culture

models for differentiation. Wasserman and Fickett [66] have

done a literature search for experimentally defined TFBSs

for five TFs associated with skeletal-muscle-specific expres-

sion and found that high-scoring sites occurred more fre-

quently in sequences linked to muscle-specific expression. In

a comparison of 28 orthologous human-mouse gene pairs

that are specifically upregulated in skeletal muscle, Wasser-

man’s group [68] found that 98% of experimentally defined

sequence-specific TFBSs specific to skeletal muscle are con-

fined to the 19% of human noncoding sequences that are

most conserved in the orthologous rodent sequences [68].

Further details of the factors that need to be considered in

phylogenetic footprinting studies and the results from these

analyses are available with the complete version of this

article, online.

Clustering of transcription-factor binding sites 
In higher eukaryotes, TFs frequently bind DNA within seg-

ments of sequence, typically hundreds of base-pairs long,

termed cis-regulatory modules or enhancers. A given gene

can have multiple such modules in its surrounding noncod-

ing sequence; they typically direct expression in either a cell-

type-specific or temporal-specific manner [69]. Typically

four to eight different TFs bind within an enhancer, and each

factor can bind to multiple sites within it [53,70] (for reviews

on transcriptional regulation in metazoans, see [69,70]).

Because pairs of sites may correspond to TFs that coregulate

expression of the nearby gene(s) [71], a number of

approaches have been developed to identify pairs of binding

sites [72-78]. For example, one study focusing on the MEF2

and MyoD families of TF found that where the two bind in

the same regulatory region, their binding sites occur at

precise distances relative to the helical turn of DNA, and

thus probably allow cooperative protein-protein interactions

[79]. Although some TFs may require specific distances

between their binding sites for cooperative binding, it has

been thought that in many cases the exact spacing and order

of TFBSs is not important for enhancer function [80].

More recently, approaches have been developed to identify

higher-order site clusterings [81-93]. Such clusters can be

homotypic, containing multiple sites for one particular TF,

or heterotypic, containing one or more binding sites for mul-

tiple TFs [89]. A search of vertebrate genomic sequence

revealed that sites bound by the liver regulatory TF hepato-

cyte nuclear factor 1 (HNF1) occurred more frequently in

hepatic genes than expected by chance, that HNF1-binding

sites in liver genes are more often associated in clusters with

sites for other TFs than expected by chance, and that the

enrichment is more pronounced in promoter regions [94]. In

a search for matches to TRANSFAC PWMs within conserved
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noncoding sequences surrounding a set of human and

mouse genes, conserved segments in upstream regions con-

tained TFBS pairs colocalized in a manner consistent with

experimentally known pairwise co-occurrences of TFs [95]. 

In a recently published study, Wasserman and colleagues

[96] performed human-mouse sequence comparisons of 14

well-studied genes and searched for matches to TFBS PWMs

within the conserved noncoding regions, using a range of

PWM score thresholds. The choice of PWM score cutoffs is a

critical issue in all predictions of sites from PWMs, as the

requirement for a more stringent match (a higher cutoff) is

likely to result in fewer false-positive predictions but can

potentially result in more sites being missed (false nega-

tives). The same kind of problem occurs when conserved

regions are used: the assumption is that fewer of the motif

‘hits’ will be false positives than when searching the whole

genome, but a greater number of functional sites may be

missed because they occur outside conserved regions. Con-

sidering regions with 70% sequence identity and a 75% rela-

tive matrix score threshold, Wasserman and colleagues

found that 66% of previously verified TFBSs were detected

with phylogenetic footprinting, compared with 73% when

just single sequences were scanned. At a 60% matrix score

threshold, looking just within the conserved regions, they

were able to detect 83% of TFBSs [96] (although one has to

keep in mind that decreasing the PWM score threshold will

increase the number of likely false-positive hits).

Full-genome comparisons of yeast noncoding
sequences
The yeasts are good organisms for phylogenetic footprinting

because of the compact noncoding portions of yeast

genomes, the available complete S. cerevisiae sequence, the

well-characterized phylogeny, and the ease of experimental

validation in S. cerevisiae. Yeast strains closely related to

S. cerevisiae can be divided into three sub-groups: Saccha-

romyces sensu stricto, Saccharomyces sensu lato and petite-

negative. A survey by Mark Johnston’s group [4] of

orthologous genomic loci in seven yeast strains from these

sub-groups showed conservation of TFBSs and their spacing

in sensu stricto species but not sensu lato species. Subse-

quently, the same group [97] sequenced the genomes of three

sensu stricto strains (S. mikatae, S. kudriavzevii, and

S. bayanus) and two more distantly related strains (S. castel-

lii and S. kluyveri), and performed genome sequence align-

ments. They identified most characterized motifs that met

their stringent criteria, and also 79 unique unknown con-

served elements of length 6-30 bp with no gaps, with some

evidence for functionality.

In a similar study using slightly different criteria, Lander

and colleagues [99] compared four sensu stricto species -

S. cerevisiae, S. paradoxus, S. mikatae, and S. bayanus -

and focused on Gal4-binding sites as a test case (Figure 2).

They found 72 motifs, both known and novel, and could

assign a tentative biological function to many novel motifs.

Most were usually upstream of genes, although some were

preferentially found downstream of genes (note that many

studies that aim to find regulatory DNA elements in yeast

have searched only upstream of the target gene(s)). Even in

these high-resolution genome sequence comparisons, not

all known motifs were found. Further discussion of these

yeast studies is available with the complete version of this

article, online.

Phylogenetic footprinting in other organisms
Similar phylogenetic footprinting approaches have been taken

to try to identify regulatory elements in the noncoding por-

tions of other genomes. A comparison of the Escherichia coli

and Haemophilus influenzae genomes led to the identification

of a novel motif that had not been found previously in any of

the individual genomes, and to the discovery of new members

of known regulons [100]. In a search within alignments of a

set of orthologous intergenic regions from the Caenorhabdi-

tis elegans and Caenorhabditis briggsae genomes (which are

23-40 Mya apart), an uneven distribution of short conserved

sequence blocks was found across the genomes, again sug-

gesting the potential co-occurrence of TFBSs within tran-

scriptional enhancers [101]. In an analysis of conservation

over four Drosophila species spanning a range of divergence

times, it was also found that conserved noncoding sequences

tend to cluster spatially, with conserved spacing between

them, and that there is a strong tendency for known cis-regu-

latory elements to overlap clusters of conserved noncoding

sequences [102]. Such clusters may correspond to functional

interactions among transcriptional enhancers.

In a landmark paper examining enhancer function in

Drosophila, Ludwig and co-workers [103] found that in a

comparison of 13 species, none of 16 surveyed D. melano-

gaster TFBSs was completely conserved. They also observed

differences in the spacing between TFBSs. Despite these dif-

ferences between species, each enhancer drove reporter-

gene expression at identical times and locations in the early

D. melanogaster embryo. Chimeric enhancers did not reca-

pitulate the wild-type expression pattern, however. The

authors proposed that stabilizing selection has maintained

phenotypic constancy, but has allowed mutation within the

enhancer, and that substitutions within TFBSs and changes

in the lengths of spacer regions between TFBSs would result

in weak changes, with many functionally compensatory

mutations. One of their significant conclusions was that this

“may make it difficult to identify homologous elements in

different species groups by sequence comparison alone”

[103]. This is an important observation to keep in mind in

the development and application of algorithms for discovery

in silico of transcriptional enhancers and TFBSs conserved

across genomes, because conserved TFBSs may not neces-

sarily occur within longer stretches of conserved sequence.
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In an important recent study, Boffelli and colleagues [104]

sequenced four different regions from over a dozen primate

species, including Old World and New World monkeys and

hominoids. The premise of their approach was that the

human-mouse comparisons can fail to align meaningfully,

and thus can fail to identify functional elements, and that the

additive collective divergence of higher primates as a group

is comparable to that of humans and mice [104]. An addi-

tional consideration is that in comparing just human and

mouse sequences there is the potential problem that some

regions of the genome are highly conserved [105]. In this

‘phylogenetic shadowing’ approach, they took into account

the phylogenetic relationships of the analyzed species. The

authors noted that the most informative subset of four to

seven species can capture most of the discriminative power

of the approach using the full set of species. Using gel-shift

assays and luciferase reporter assays, they found that con-

served regions were bound by protein more frequently, and

thus were presumably more likely to be functional, than

nonconserved regions [104].

In a similar study, Thomas and colleagues [106] compared

sequences from 12 evolutionarily diverse vertebrate species,

for sequences orthologous to a human chromosomal region

containing 10 genes, including the gene mutated in cystic

fibrosis (CFTR). The authors noted that the ‘multi-species

conserved regions’ that they detected overlapped with 63% of

the functionally validated regulatory elements in the CFTR
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Figure 2
Sequence comparison of the GAL1-GAL10 intergenic region across four yeast species. Scer, S. cerevisiae; Spar, S. paradoxus; Smik, S. mikatae; Sbay,
S. bayanus. Arrows indicate the start and transcriptional orientation of the GAL1 and GAL10 open reading frames; dashes in the alignment indicate gaps;
nucleotide positions conserved across all four species are denoted by asterisks. Stretches of conserved nucleotides are underlined, and experimentally
validated transcription-factor binding-site footprints are boxed and labeled with the name of the footprinted transcription factor. Underlined regions that
are not boxed correspond to potential, previously unknown, transcription-factor binding sites. Note that not all nucleotide positions of a footprinted
binding site are necessarily conserved across all four species in this comparison (note the Mig1 sites, for example). The nucleotides matching the
published Gal4 binding-site motif are in gray; for the fourth Gal4 site, non-standard consensus motif nucleotides are shown in boldface. Reproduced with
permission from [99].

Scer   TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACA
         Spar   CTATGTTGATCTTTTCAGAATTTTT-CACTATATTAAGATGGGTGCAAAGAAGTGTGATTATTATATTACATCGCTTTCCTATCATACACA

Smik   GTATATTGAATTTTTCAGTTTTTTTTCACTATCTTCAAGGTTATGTAAAAAA-TGTCAAGATAATATTACATTTCGTTACTATCATACACA
Sbay   TTTTTTTGATTTCTTTAGTTTTCTTTCTTTAACTTCAAAATTATAAAAGAAAGTGTAGTCACATCATGCTATCT-GTCACTATCACATATA
      * * ****  * *  *   ** ** *  *   **           **  ** * *    *    **   **    *  * * ** * * *

Scer TATCCATATCTAATCTTACTTATATGTTGT-GGAAAT-GTAAAGAGCCCCATTATCTTAGCCTAAAAAAACC--TTCTCTTTGGAACTTTCAGTAATACG
Spar TATCCATATCTAGTCTTACTTATATGTTGT-GAGAGT-GTTGATAACCCCAGTATCTTAACCCAAGAAAGCC--TT-TCTATGAAACTTGAACTG-TACG
Smik TACCGATGTCTAGTCTTACTTATATGTTAC-GGGAATTGTTGGTAATCCCAGTCTCCCAGATCAAAAAAGGT--CTTTCTATGGAGCTTTG-CTA-TATG
Sbay TAGATATTTCTGATCTTTCTTATATATTATAGAGAGATGCCAATAAACGTGCTACCTCGAACAAAAGAAGGGGATTTTCTGTAGGGCTTTCCCTATTTTG

 **   ** ***  **** ******* **   *  *   *     *  *    *  *       **  **      * *** *    ***    *  *  *

Scer CTTAACTGCTCATTGC-----TATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCCTCGTCT
Spar CTAAACTGCTCATTGC-----AATATTGAAGTACGGATCAGAAGCCGCCGAGCGGACGACAGCCCTCCGACGGAATATTCCCCTCCGTGCGTCGCCGTCT
Smik TTTAGCTGTTCAAG--------ATATTGAAATACGGATGAGAAGCCGCCGAACGGACGACAATTCCCCGACGGAACATTCTCCTCCGCGCGGCGTCCTCT
Sbay TCTTATTGTCCATTACTTCGCAATGTTGAAATACGGATCAGAAGCTGCCGACCGGATGACAGTACTCCGGCGGAAAACTGTCCTCCGTGCGAAGTCGTCT

       **  **          ** ***** ******* ****** ***** ***  ****   * *** ***** * *  ****** ***    * ***

Scer   TCACCGG-TCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAA-----TACTAGCTTTT--ATGGTTATGAA
Spar TCGTCGGGTTGTGTCCCTTAA-CATCGATGTACCTCGCGCCGCCCTGCTCCGAACAATAAGGATTCTACAAGAAA-TACTTGTTTTTTTATGGTTATGAC
Smik ACGTTGG-TCGCGTCCCTGAA-CATAGGTACGGCTCGCACCACCGTGGTCCGAACTATAATACTGGCATAAAGAGGTACTAATTTCT--ACGGTGATGCC
Sbay GTG-CGGATCACGTCCCTGAT-TACTGAAGCGTCTCGCCCCGCCATACCCCGAACAATGCAAATGCAAGAACAAA-TGCCTGTAGTG--GCAGTTATGGT

      ** *   ** *** *      *      ***** ** *  *   ****** **     *   * **     * *             ** ***  

Scer   GAGGA-AAAATTGGCAGTAA----CCTGGCCCCACAAACCTT-CAAATTAACGAATCAAATTAACAACCATA-GGATGATAATGCGA------TTAG--T
Spar AGGAACAAAATAAGCAGCCC----ACTGACCCCATATACCTTTCAAACTATTGAATCAAATTGGCCAGCATA-TGGTAATAGTACAG------TTAG--G
Smik CAACGCAAAATAAACAGTCC----CCCGGCCCCACATACCTT-CAAATCGATGCGTAAAACTGGCTAGCATA-GAATTTTGGTAGCAA-AATATTAG--G
Sbay   GAACGTGAAATGACAATTCCTTGCCCCT-CCCCAATATACTTTGTTCCGTGTACAGCACACTGGATAGAACAATGATGGGGTTGCGGTCAAGCCTACTCG
              ****    *         *   *****     ***              * * *    *  * *    *     *           **    

Scer TTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCG--ATGATTTTT-GATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCAC-----TT
Spar GTTTT--TCTTATTCCTGAGACAATTCATCCGCAAAAAATAATGGTTTTT-GGTCTATTAGCAAACATATAAATGCAAAAGTTGCATAGCCAC-----TT
Smik TTCTCA--CCTTTCTCTGTGATAATTCATCACCGAAATG--ATGGTTTA--GGACTATTAGCAAACATATAAATGCAAAAGTCGCAGAGATCA-----AT
Sbay TTTTCCGTTTTACTTCTGTAGTGGCTCAT--GCAGAAAGTAATGGTTTTCTGTTCCTTTTGCAAACATATAAATATGAAAGTAAGATCGCCTCAATTGTA

  * *      *    ***       * **   *  *     *** ***   *  *  **  ** * ********   ****    *              

Scer   TAACTAATACTTTCAACATTTTCAGT--TTGTATTACTT-CTTATTCAAAT----GTCATAAAAGTATCAACA-AAAAATTGTTAATATACCTCTATACT
Spar TAAATAC-ATTTGCTCCTCCAAGATT--TTTAATTTCGT-TTTGTTTTATT----GTCATGGAAATATTAACA-ACAAGTAGTTAATATACATCTATACT
Smik   TCATTCC-ATTCGAACCTTTGAGACTAATTATATTTAGTACTAGTTTTCTTTGGAGTTATAGAAATACCAAAA-AAAAATAGTCAGTATCTATACATACA
Sbay   TAGTTTTTCTTTATTCCGTTTGTACTTCTTAGATTTGTTATTTCCGGTTTTACTTTGTCTCCAATTATCAAAACATCAATAACAAGTATTCAACATTTGT
       *   *     *     *      * *  **  ***   *  *        *        *  ** **  ** * *  * *    * ***       *   

Scer   TTAA-CGTCAAGGA---GAAAAAACTATA
Spar   TTAT-CGTCAAGGAAA-GAACAAACTATA
Smik   TCGTTCATCAAGAA----AAAAAACTA..
Sbay   TTATCCCAAAAAAACAACAACAACATATA

 *    *   **  *    ** **  **

GAL10

GAL1

TATA

Gal4 Gal4 Gal4

Gal4

Mig1

Mig1 TATA



genomic region, and that many of the remaining missed

known regulatory elements may have been missed either

because they are shorter than their approach could detect

(< 25 bp), or because they are primate-specific. Interestingly,

their results suggest that the power to detect multi-species

conserved regions seems to depend mainly on the total diver-

gence of the subset of species rather than on the particular

distribution of the species among lineages, and thus that

combined phylogenetic branch length may be a useful metric

for guiding the selection of additional genomes to sequence.

Future directions in the discovery of
transcription-factor binding sites
Francis Collins has said [1] that further multi-species com-

parisons, especially those occupying distinct evolutionary

positions, will lead to significant refinements in our under-

standing of the functional importance of conserved

sequences and are thus crucial to the functional characteri-

zation of the human genome. Sidow [107] noted that identi-

fication of the majority of functional elements relevant to

human biology requires placental genomes beyond those of

human, mouse, and rat. Sidow commented that “Building a

parts list is important, but multiple sequence alignments by

themselves do not quantify conservation and allow only

limited inference as to which conserved functional element

is more constrained than another” [107].

In recent years, a number of efforts have been focused on

attempting to predict TFBSs using structural information

on the TF protein itself or related protein-DNA complexes.

Some of these studies have attempted to determine what

‘recognition rules’ or ‘recognition code’ may exist that

stipulate which DNA base-pairs are likely to be bound by

which amino acids, in the context of a particular structural

class of DNA-binding protein. There is no obvious, simple

code like the genetic code, and any recognition rules that

might exist are likely to be quite degenerate and highly

dependent upon the docking arrangement of the protein

with its DNA binding site [118,119]. An important challenge

will be to characterize the binding specificities of the

approximately 1,850 TFs in the human genome [120]. The

high-throughput technologies described earlier will help

with these studies. Further details of these future develop-

ments are available with the complete version of this article,

online. Finally, there is a need for the development of high-

throughput transgenic bioassays for validating predicted

enhancers, so that we can be sure that in silico predictions

translate to in vivo understanding. 
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