
p53 was initially identified in complex with the simian 
virus 40 T antigen in transformed rodent cells1,2 and was 
first recognized as a tumour suppressor in 1989 (refs3,4); 
subsequently, p53 has been found to be the most fre-
quently mutated gene in cancer5,6. Because of its central 
role in the DNA damage response (DDR), p53 is often 
referred to as the ‘guardian of the genome’. Although 
TP53 is the most studied human gene of all time7, there 
are still many open questions concerning the regulation 
of p53 activity by cellular stresses.

In this Review, we focus on discussing the estab-
lished function of p53 as a transcription factor. p53 is 
activated by cellular stresses including DNA damage, 
hypoxia, oncogene activation and ribosomal stress. In 
response, p53 can promote cell cycle arrest, DNA dam-
age repair, various pathways of cell death and metabolic 
changes8–10. Activation of p53 in response to stress largely 
occurs through protein stabilization, thereby enabling 
rapid (within a few hours) increase in total protein abun-
dance and initiation of the p53 transcriptional response. 
In nonstressed conditions, p53 levels are kept low by the 
E3 ubiquitin ligase MDM2 (refs11–13). Upon activation 
of the DDR, p53 is phosphorylated, rendering it insen-
sitive to MDM2 (ref.14) and leading to its accumulation 
in cells. MDM2 itself is a transcriptional target of p53, 
thereby forming a regulatory feedback loop15. In addi-
tion to MDM2, p53 regulates the expression of genes of 
multiple pathways16. The best-studied pathways induced  
by p53 after DNA damage are cell cycle arrest followed by  
DNA repair or apoptosis. The choice of pathway acti-
vation is based on the extent and type of DNA damage 

and on cell type. How p53 integrates these and other 
cues to choose between the competing cell survival and 
cell death outcomes has been of great interest and is still 
largely unknown.

In this Review, we discuss the mechanisms regulating 
p53 that influence cell fate in response to DNA damage. 
These mechanisms include modulation of DNA binding 
by p53 through DNA sequence and chromatin struc-
ture, post-translational modifications (PTMs) of p53 
and interactions with cofactors and temporal expres-
sion dynamics of p53. We focus on the choice between 
cell cycle arrest and apoptosis, which are the most com-
monly studied p53-dependent cellular outcomes in 
response to DNA damage.

p53 in the DNA damage response
Following DNA damage, p53 upregulates the expres-
sion of genes involved in both cell cycle arrest and DNA 
repair (leading to cell survival) and apoptosis (leading to 
cell death). The contexts, timing and extent of pathway 
induction have important implications for cell fate. The 
genes induced by p53 activation span multiple biological 
functions; the most enriched categories in genome-wide 
analyses (and the best known p53 targets) are the 
DDR (for example, DNA damage-binding protein 2 
(DDB2) and XPC), cell cycle arrest (cyclin-dependent 
kinase inhibitor 1 (CDKN1A, which encodes p21) and 
GADD45A), apoptosis (PUMA (also known as BCL-2-
binding component 3) and BAX), metabolism (TP53-
induced glycolysis and apoptosis regulator (TIGAR) 
and aldehyde dehydrogenase family 1 member A3) and 

The multiple mechanisms that 
regulate p53 activity and cell fate
Antonina Hafner  1,4, Martha L. Bulyk2,3, Ashwini Jambhekar1 and Galit Lahav  1*

Abstract | The tumour suppressor p53 has a central role in the response to cellular stress. 
Activated p53 transcriptionally regulates hundreds of genes that are involved in multiple 
biological processes, including in DNA damage repair, cell cycle arrest, apoptosis and 
senescence. In the context of DNA damage, p53 is thought to be a decision-making transcription 
factor that selectively activates genes as part of specific gene expression programmes to 
determine cellular outcomes. In this Review , we discuss the multiple molecular mechanisms of 
p53 regulation and how they modulate the induction of apoptosis or cell cycle arrest following 
DNA damage. Specifically , we discuss how the interaction of p53 with DNA and chromatin affects 
gene expression, and how p53 post-translational modifications, its temporal expression dynamics 
and its interactions with chromatin regulators and transcription factors influence cell fate. These 
multiple layers of regulation enable p53 to execute cellular responses that are appropriate for 
specific cellular states and environmental conditions.

1Department of Systems 
Biology, Harvard Medical 
School, Boston, MA, USA.
2Division of Genetics, 
Department of Medicine, 
Brigham and Women’s 
Hospital and Harvard 
Medical School, Boston, 
MA, USA.
3Department of Pathology, 
Brigham and Women’s 
Hospital and Harvard 
Medical School, Boston, 
MA, USA.
4Present address: Department 
of Developmental Biology, 
Stanford University, Stanford, 
CA, USA.

*e-mail: galit_lahav@ 
hms.harvard.edu

https://doi.org/10.1038/ 
s41580-019-0110-x

REvIEWS

Nature reviews | Molecular cell Biology

http://orcid.org/0000-0003-4927-5227
http://orcid.org/0000-0003-4758-6427
mailto:galit_lahav@
hms.harvard.edu
mailto:galit_lahav@
hms.harvard.edu
https://doi.org/10.1038/s41580-019-0110-x
https://doi.org/10.1038/s41580-019-0110-x


post-translational regulators of p53 (MDM2 and p53- 
induced phosphatase 1). Genomic and transcriptomic 
studies have attempted to identify a comprehensive set 
of p53 target genes from various cell types and DNA 
damage settings. Transcriptional profiling found a wide 
range of genes affected by p53, ranging in number from 
less than 100 to more than 1,500, depending on the con-
text of p53 activation and data processing approach17–19; 
however, these studies could not distinguish between 
direct and indirect targets of p53, thereby precluding 
unambiguous identification of direct p53 targets.

Chromatin immunoprecipitation followed by 
sequencing (ChIP–seq) studies attempted to iden-
tify genes that are directly regulated by p53, but many 
studies found poor correlation between p53 binding 
and transcriptional effects20–22. One major challenge 
for identifying direct target genes from ChIP–seq data 
(for p53 as well as for other transcription factors) is 
connecting binding to the regulation of specific genes. 
The majority of high-confidence p53 target genes  
contain a p53 binding site near the transcription start 
site (TSS)23–27, either in the promoter region or within 
the first intron28–31, making the association and vali-
dation of binding site–target gene pairs more straight-
forward. Generally, a cut-off of maximum distance from 
the TSS is used to link ChIP signals to specific genes. 
However, distal binding sites (>10 kb from any TSS) rep-
resent a large fraction of p53 binding sites32,33 and are 
found not only in enhancers but also in Alu interspersed 
repeats23 and other repeat sequences34. Although these 
distal p53 binding sites were generally not considered in 

p53 target gene analyses, there is evidence that they can  
regulate transcription. For example, distal binding 
sites correlated with gene induction35,36, gave rise to 
enhancer RNAs (eRNAs)37,38, which are associated with  
functional enhancers39, and induced expression of 
reporter genes in high-throughput assays40,41. Many p53 
binding sites, including distal sites as well as those iden-
tified as promoters, stimulated transcription in a screen 
for enhancers41. Further confounding genome-wide 
studies comparing ChIP signals before and after DNA 
damage induction was the identification of substantial 
DNA binding of basally expressed p53 (before DNA 
damage)20,42–44. Thus, it is clear that p53 may influence 
cell fate decisions by a variety of mechanisms, which are 
discussed below.

In contrast to earlier reports, which suggested that 
p53 can be both an activator and a repressor of transcrip-
tion30,45,46, an emerging theme from multiple large-scale 
studies is that p53 is a transcriptional activator and some 
of its targets serve as transcriptional inhibitors and thus 
lead to p53-dependent but indirect repression (Box 1). In 
light of these recent meta-analyses, we focus on the role 
of p53 as a transcriptional activator.

The p53 domains regulate its function
The p53 protein consists of several well-characterized 
functional domains. At the amino terminus are two 
tandem transcription activation domains47–49 (TADs). 
Both TADs were shown to be required for proper p53 
target gene induction in response to DNA damage and 
p53 tumour suppressor function in mice50, although 

Box 1 | p53-dependent transcription repression

recently published genomic data sets of gene expression and DNa binding 
showed that high-confidence p53 target genes are almost exclusively 
upregulated by p53 (refs28,36,40). similarly, genomic studies showed that  
p53 binding is not enriched at genes that are repressed following p53 
activation33,86,103–105. Furthermore, high-throughput enhancer activity assays  
of p53-bound genomic sites did not find evidence of direct repression by p53 
(refs40,41). Nevertheless, multiple studies identified genes that are repressed in  
a p53-dependent manner, particularly genes involved in cell cycle regulation36. 
their repression is thought to occur indirectly and to be largely mediated through 
the canonical p53 target gene CDKN1A (encoding p21)36,203. recent genomic 
analyses attribute a key role for the complex DreaM (dimerization partner, 
rB-like, e2F, multivulval class B (MuvB)) in p53-mediated transcription 
repression36,204 (see the figure). DreaM consists of multiple subunits, including the 
core MuvB complex proteins, the transcription factor e2F4 or e2F5 and rB-like 
protein 1 (also known as p107) or rB-like protein 2 (p130; reviewed elsewhere205). 
inhibition of cyclin-dependent kinase (CDK) mediated by p21 results in 
hypophosphorylation of p107 and p130 (ref.206) and leads to their incorporation 
into the DreaM complex207,208 and to repression of mitosis-promoting genes  
such as CCNB1 (encoding cyclin B1) and CCNB2 (encoding cyclin B2) and the 
phosphatase CDC25A36,207 (other gene targets are compiled elsewhere205).

in normal cellular conditions, the interacting MuvB proteins are regulated in a cell-cycle-specific manner, and thus, the 
transcription-repressing DreaM complex is restricted to G0 and early G1 cells. at later cell cycle stages, transcription 
activators MYB-related protein B209 and/or forkhead box protein M1 (ref.210) replace the e2F and p107 or p130 proteins208. 
in response to DNa damage or other stresses, p53 induction and the resulting p21 activation favour the formation of the 
suppressive DreaM complex. the transcriptional repressor e2F7, whose gene is another direct p53 target, is thought to 
function in conjunction with rB-associated protein (prB) and DreaM to indirectly mediate p53-driven repression of 
cell-cycle-related genes31,103,211–213. Other effectors of p53-mediated transcription repression are noncoding rNas37,214,215. 
the best known p53-regulated noncoding rNa is the microrNa mir-34a, which regulates cell cycle arrest and anti- 
apoptotic genes (reviewed elsewhere31,216) and long intergenic noncoding lincrNa-p21, which was implicated in 
p53-dependent transcription repression215.
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there were qualitative differences in how mutations in 
each TAD affected gene expression. In general, a TAD1 
mutant showed greater effects on target-gene expression 
than did a TAD2 mutant; however, the TAD1 mutant 
maintained expression of some genes, for example, Bax, 
that were lost upon inactivation of both TADs, suggest-
ing a role for the TADs in directing p53 target gene selec-
tion50. The TADs are followed by a proline-rich domain 
that contributes to transcription activation and is neces-
sary for restricting cell growth51. The following region is 
the DNA-binding core domain52, which has been crys-
tallized in complex with DNA53–55 and is the site of most 
cancer-associated mutations52. p53 binds cooperatively56 
to its target site as a tetramer (dimer of dimers)57.

Although the core domain can tetramerize on its own  
when complexed with DNA and forms stable inter-
actions58, the adjacent oligomerization domain facilitates 
these interactions59. As expected on the basis of crystal 
structures, mutations in the tetramerization domain 
impaired p53 DNA binding and led to loss of its tran-
scriptional activity60–62. In one study, p53 mutants that 
generated monomeric, dimeric or tetrameric species 
activated distinct gene sets, suggesting that oligomeriza-
tion is critical for cell fate decisions63. This idea was 
supported by findings that p53 tetramerizes in cells fol-
lowing DNA damage64 and activates gene expression37 
before substantial protein accumulation, suggesting 
that the initial p53-mediated response may be driven 
by tetramerization rather than by an increase in protein 
levels. Using a series of p53 mutants that differed in their 
extent of cooperative binding to target sites, induction of 

cell cycle arrest genes was found to be less dependent on 
cooperative p53 binding than was induction of apopto-
sis genes65, and mice expressing cooperativity-deficient 
mutant p53 proteins developed spontaneous tumours 
and showed specific deficits in apoptosis66. These stud-
ies suggest that intermolecular p53 interactions may 
influence cell fate following DNA damage.

The role of the carboxy-terminal domain (CTD) of 
p53 has been especially challenging to decipher. It is 
highly unstructured67 and post-translationally modified, 
in particular, serving as the primary site of acetylation68. 
Initial studies suggested the CTD has a negative regula-
tory role, because recombinant p53 bound weakly to its 
targets69 and binding could be enhanced with antibod-
ies against the CTD or by phosphorylation69 or acetyl-
ation68,70 of the p53 CTD. These studies suggested the 
existence of allosteric inhibition of p53 DNA binding 
by the CTD, which could be released by appropriate 
signals. However, lack of CTD conformational change 
upon DNA binding71 and robust p53 DNA binding 
in vitro in the absence of competing DNA72 subse-
quently called this model into question. Nevertheless, 
the CTD is required for DNA binding and transcription 
in vitro73, and roles for the CTD in promoting p53 linear 
diffusion along DNA74–76, binding to nonlinear DNA77,78 
and binding to nucleosomes79 have been proposed 
(reviewed elsewhere80 and discussed below). Deletion 
of the CTD reduced expression of both pro-apoptosis 
and pro-survival gene candidates81, obscuring its role 
in orchestrating a coordinated set of genetic pathways. 
Expression of p53 lacking 24 amino acids82 or 31 amino 
acids83 of the CTD in mice resulted in reduced viability 
after birth and a general hyperactivation of p53, leading 
to deregulation of telomere maintenance83 or altered 
expression of distinct subsets of target genes in different 
tissues82. In the latter case, alterations in gene expression 
resulted either from changes in p53 binding to target 
sites or from subsequent events82. The specific effects of 
CTD deletion in mice suggest that it may play a role in 
target-gene selection following DNA damage and not 
simply dampen p53 function globally.

The DNA-binding motif of p53
The p53 binding motif was first discovered in the early 
1990s84,85 and consists of two 10 bp half-site sequences, 
each binding to one p53 dimer and separated by a spacer 
of variable length, between 0 and 20 nucleotides25,84,86. 
The half-site consensus, which is derived from in vitro 
selection experiments, is RRRCWWGYYY84,85 (R rep-
resents A or G, W represents A or T and Y represents 
C or T) (fig. 1a). Within each 10 bp half site are two 5 bp 
quarter sites; these are palindromic sequences that can 
adopt a canonical head-to-head orientation as well as 
head-to-tail or tail-to-tail arrangements (fig. 1b). The 
fact that p53 is tetrameric and its binding site consists  
of four quarter sites raised the possibility that each  
monomer recognized one quarter site, which was con-
firmed by cocrystal structures showing each half site 
bound by two p53 molecules54,55. In vivo determination 
of p53 binding sites confirmed the binding preference 
for this consensus site, which also emerged as the most  
enriched motif in multiple studies using a variety of  
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Fig. 1 | The p53 binding site. a | The canonical p53 motif in the head-to-head 
orientation. The IUPAC (International Union of Pure and Applied Chemistry) motif of one 
p53 half site is shown at the top and the 20 bp position weight matrix derived from p53 
ChIP–seq data at the bottom104. R represents A or G, W represents A or T and Y represents 
C or T. b | Examples of genomic p53 binding sites. CDKN1A (encoding p21) and BTG2 are 
activated by p53, whereas CCNB1 (encoding cyclin B1) is repressed by p53. CDKN1A, 
representing the consensus sequence84, contains two pairs of quarter sites in head-to- 
head orientation with no spacer. BTG2 contains a slightly divergent sequence with  
two pairs of tail-to-tail quarter sites and a 1 bp spacer88. CCNB1 contains a highly 
divergent site, with two pairs of head-to-tail quarter sites and a 12 bp spacer109; these 
features are not frequently observed at promoter-proximal p53 binding sites of induced 
target genes.
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genomic approaches24–26,52,87. Nevertheless, some strongly  
p53-induced genes, such as BTG2 (ref.88), have non-
canonical binding sites (fig. 1b). Binding sites with orienta-
tions other than head-to-head or containing long spacer 
sequences23–25,28,40,89 were not enriched in the genome, 
suggesting that these may be outliers and/or limited to 
specific genes.

A range of p53 affinities was observed for different 
degenerate binding motifs33,56,57,90, with even single- 
base substitutions causing up to a half-log change in 
the dissociation constant of p53 binding to DNA58. The 
degree of cooperativity in p53 binding was influenced 
by the flexibility of the sequence in the centre of the core 
motif (WW), with the preferred AT sequence being the 
most flexible and showing lowest cooperativity, and  
the weakest-affinity and inflexible TA dinucleotide lead-
ing to highly cooperative binding91. Single-nucleotide 
polymorphisms in p53 binding elements that caused 
core-motif deviation from the consensus resulted in 
lower transactivation of a reporter gene92. On the basis 
of this information, several algorithms for finding and 
scoring p53 binding sites have been developed24,25,93–96. 
Scanning the genome with the p53 position weight 
matrix (representing transcription factor binding pref-
erences) identified ~14,000–21,000 possible p53 binding 
sites depending on the model and threshold, but <50% 
were bound by p53 in ChIP–seq experiments25,32,40,97. 
Nevertheless, the position weight matrix of the full p53 
binding site was a significant predictor of p53 binding 
in vivo. Interestingly, analyses of select p53 target pro-
moters revealed that genes involved in cell cycle regu-
lation harboured high-affinity binding sites, whereas 
those involved in apoptosis displayed a broader range 
of affinities and/or larger deviations from the consensus 
site and resulted in reduced p53 binding56,65,98–100.

The above observations initially led to the ‘affinity 
model’, which postulated that p53 concentrations could 
determine the choice between cell cycle arrest and apop-
tosis. This model was supported by studies showing that 
modulating p53 expression resulted in cell cycle arrest 
at low p53 levels and apoptosis at higher levels101 and 
that pro-apoptosis genes required cooperative p53 bind-
ing (and by extension, higher p53 levels102). However, 
genes encoding key regulators of apoptosis such as 
PUMA and NOXA1 have high-affinity binding sites in 
their promoters20,56. Additionally, consistent correlations 
between p53 levels, binding at promoters of apoptosis 
genes and induction of apoptosis were not observed20–22, 
and even at low p53 levels, the protein was found bound 
at apoptosis genes21. In fact, many p53-bound genes did 
not display p53-dependent regulation22,25,65, suggesting 
that differences in p53 PTMs and expression dynamics 
and the status of chromatin at target genes may underlie 
key p53-mediated cell fate decisions.

Although meta-analyses and several genome-wide 
studies have concluded that p53 functions only as a 
transcription activator28,33,36,40,41,86,103–105, many individ-
ual studies have reported repressive functions that are 
intimately linked to the structure of the p53 binding 
site22,23,25,65,106. p53-repressed genes either lack an identi-
fiable binding site or contain weaker binding motifs. For 
example, the promoters of the p53-repressed survivin 

(also known as BIRC5)107 and Alu elements23 contain 
3 bp spacers (in contrast to the 0 or 1 bp spacers identi-
fied in p53-activated genes). Half-site orientations other 
than head-to-head were also reported for some repres-
sed genes108,109, as in the case of the cyclin B1 (CCNB1)  
promoter109, which additionally includes a long spacer 
(fig. 1b). Furthermore, repressed genes were reported 
to require highly cooperative binding, suggesting that 
repression occurred at higher levels of p53 expression65. 
It is possible that p53 functions as a repressor in unique 
situations (for example, in particular cell types or dam-
age responses or with defined kinetics), thus evading 
recognition in meta-analyses that compare data sets 
obtained in disparate conditions.

Chromatin structure tunes p53 function
Following the determination of the p53 DNA-binding 
site, the ability of p53 to bind chromatin was extensively 
assessed. An early study79 found that p53 bound with 
higher affinity to chromatin than to DNA oligonucleo-
tides, and subsequent studies demonstrated that p53 
could bind closed chromatin, thus classifying it as a 
pioneer transcription factor (transcription factor that 
can directly bind nucleosomal DNA in chromatin)110–112. 
These studies partially reconciled the discrepancies 
regarding the role of the CTD in DNA binding, as they 
revealed that some of the in vitro results were artefacts of 
binding to short oligonucleotides. In fact, the CTD was 
found to enhance binding to nucleosomes regardless of 
its acetylation state (see below)79. Some genome-wide 
analyses documented co-occurrence of other transcrip-
tion factor binding sites with p53 binding sites22,106, but a 
meta-analysis of such studies revealed that p53 binding 
sites did not cluster with sites for any other transcrip-
tion factors and that the initial reports were based on 
low-confidence p53 binding sites40. These findings raised 
the possibility that chromatin structure, rather than 
binding site affinity, might underlie the genomic bind-
ing patterns of p53. However, meta-analyses showed the 
p53 binding sites were largely conserved across cell types 
and treatments40,106, casting doubt on both the affinity 
model and the idea that chromatin structure has a major 
regulatory role. In fact, the only parameter determining 
p53 binding was found to be the presence of the p53 
binding site25,40. Although chromatin-based selection of 
target genes was not supported by meta-analyses, at least 
one p53 target gene — the gene encoding the adaptor 
14-3-3-σ — was made unresponsive to p53-dependent 
activation following DNA methylation113. A compar-
ison of p53 binding sites in normal and cancer cells 
revealed an enrichment for CpG islands and hypometh-
ylated DNA in normal cells but not in cancer cells with 
wild-type p53 (ref.26). This difference likely arises from 
globally altered chromatin landscapes in cancer cells, 
which may affect the accessibility of binding sites to 
p53 either through chromatin structure itself or through 
binding of other factors such as the transcription  
factor SP1 (see below)26.

In support of the role of chromatin in directing p53 
binding and function, the chromatin remodeller RSF1 
was found to be required for p53 binding, formation 
of a complex with the histone acetyltransferase p300 
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and p300-mediated acetylation of p53 target genes in 
response to DNA damage114. RSF1 deficiency reduced 
cell death following DNA damage and compromised the 
expression of both cell cycle arrest and apoptosis genes. 
Although DNA methylation, eRNA production and 
chromatin remodelling appear to guide p53-binding-site 
selection, they appear to occur before DNA damage and 
the choice of which p53-dependent transcriptional pro-
gramme to activate. Nevertheless, the basal state of chro-
matin does appear to affect gene expression. Basal gene 
expression was higher in regions of open chromatin 
and in regions where p53 binding resulted in chroma-
tin remodelling, leading to higher fold changes in gene 
expression33,97. How the interplay between the chroma-
tin structure and p53, before and after DNA damage, 
affects cell fate is a fundamental question that is also 
highly relevant for cancer therapy.

In addition to p53 induction in response to DNA 
damage or other stimuli, p53 binds to a subset of promot-
ers42 and enhancers37,44 in a basal state before gene acti-
vation, suggesting that distinct chromatin states at these 
regions115,116 help maintain p53 binding41. A study using 
global run-on sequencing (GRO-seq; a method to iden-
tify RNAs that are actively transcribed by RNA polymer-
ase II) found that p53-independent production of eRNA 
correlated with increased p53 binding and the responsive-
ness of nearby genes37, raising the possibility that eRNAs 
may direct p53 target selection. How eRNA-mediated 
p53 recruitment could lead to gene activation remains 
unknown, and the enhancer priming model contrasts 
with studies in mouse embryonic stem cells (ESCs), in 
which p53 binding at enhancer sites reduced its activation 
of associated genes44. Additional studies are needed to 
show whether this difference arises from unique proper-
ties of stem cells or whether p53 priming and interference 
occur simultaneously at different sites.

Post-translational modification of p53
More than 300 different PTMs of p53 have been detected 
by mass spectrometry117–119. The role of some PTMs has 
been well studied and shown to be crucial for regulat-
ing p53 levels and activity (fig. 2a). For example, a key 
feedback mechanism for controlling p53 expression 
levels is polyubiquitylation of p53 at the carboxyl ter-
minus by its target, MDM2. Whereas ubiquitylation 
targets p53 for degradation, phosphorylation of p53 at 
the amino-terminal serine and threonine residues in 
response to DNA damage weakens the p53–MDM2 inter-
action and thus stabilizes p53. PTMs can be specific to 
the type of DNA damage120–126 and thus can accordingly 
direct the p53-mediated response and cell fate.

The p53 CTD is highly regulated by acetylation of sev-
eral lysine residues, but the full range of consequences of 
these PTMs and the underlying molecular mechanisms 
have been difficult to elucidate, in part because the effects 
of acetylation can depend on both the overall level of 
acetylation (bulk) and on the specific sites at which it 
occurs. Bulk p53 acetylation increased following DNA 
damage, and acetylated p53 was enriched at the promoter 
of the cell cycle arrest gene CDKN1A70, yet mutating 
five70 or six127 acetylation sites in the p53 CTD resulted 
in equal or greater effects on apoptosis than on cell cycle 

arrest127,128. The effects of acetylation on DNA binding 
have been varied: early studies showed that acetylation 
enhanced specific DNA binding68 but inhibited DNA 
binding of the CTD129; later studies found no effects of  
mutating four lysine residues in the CTD to either acetyl-
ated or nonacetylated mimics130 or found effects on gene 
expression only in specific cell types127. A mouse with 
lysine-to-arginine (KR) substitutions at seven acetyl-
ation sites in the CTD showed no grossly abnormal 
phenotypes, although thymocytes (but not mouse embry-
onic fibroblasts) showed increased p53 responsiveness  
to irradiation131. In human cells, expression of p53 with 
eight KR substitutions (six in the CTD and two in the 
DNA binding domain (DBD)) had no effects on expres-
sion of the p53 target MDM2 but did result in reduced 
expression of CDKN1A and multiple pro-apoptotic genes, 
which was linked to increased interactions between 
p53 and MDM2 or MDMX132. It is likely that MDM2 
inhibited p53 function by occluding the transactivation  
domain133,134 rather than by ubiquityl ation, because the 
8KR p53 mutant is expected to have lost most of its 
ubiquitin acceptor sites. These conflicting reports on the 
effects of acetylation on p53-mediated gene activation 
were recently somewhat reconciled by the finding that 
the CTD enhanced p53 binding preferentially to nonca-
nonical sites and that this function was compromised by 
acetylation135, leading the authors to propose that acetyl-
ation may turn off the p53 response at these loci. In sum-
mary, these studies suggested that p53 acetylation does 
not have a major regulatory role but could fine-tune p53 
function in a context-dependent manner.

Whereas the above studies focused on bulk levels 
of acetylation, many site-specific PTMs appear to have 
greater effects on regulation of apoptosis than on cell 
cycle arrest. These PTMs vary in their domain location, 
functional consequence and type. For example, com-
bined acetylation of Lys370, Lys372 and Lys373 in the 
CTD (all substrates of the acetyltransferase p300 (ref.68)) 
or of Lys120 in the DBD (a substrate of TIP60)136–138 pro-
moted apoptosis136,137,139, whereas acetylation at Lys317 
by PCAF suppressed it140 (fig. 2a). Lys120 mutations 
compromised cell cycle arrest as well as affecting apop-
tosis136. By contrast, acetylation of Lys320 showed  
greater regulation of cell cycle arrest139. Although there 
are no genome-wide measurements of Lys120-acetylated 
p53, structural studies showed that Lys120 acetylation 
switches the p53 protein conformation into a state that 
increases binding to the BAX binding site, suggesting 
that it may promote apoptosis141,142.

Although acetylation is not prevalent in the amino 
terminus, phosphorylation is commonly found in this 
region (fig. 2a). Notably, phosphorylation of Ser46 
by the MDM2-regulated homeodomain-interacting  
protein kinase 2 (HIPK2)143–145 was initially shown to 
regulate apoptosis by inducing a key apoptotic gene, 
p53-regulated apoptosis-inducing protein 1 (ref.146), 
and subsequently by enhancing binding at promoters of 
several other apoptosis-inducing genes22. By contrast,  
phosphorylation of Ser15, which is mediated by the major 
DDR kinases ATM147–149 and ATR150, was required for cell 
cycle arrest. The analogous phosphorylation site in mice  
(at Ser18) showed similar effects on cell cycle arrest in 
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ESCs151, but in vivo, the mutation showed greater effects 
on radiation-induced apoptosis than cell cycle arrest in 
thymocytes and splenocytes152. Several other phospho-
rylation events differ in their timing and response to 
different cues. Low levels of gamma irradiation induced 
phosphorylation of Ser6 and Ser15 very rapidly126,153 as 
well as of Ser315, and higher doses induced phosphoryl-
ation of Ser20 and Ser37 (ref.125). By contrast, phospho-
rylation in response to ultraviolet light was delayed and 
prolonged at these sites125 and even occurred at Ser392, 
which is not phosphorylated following gamma irradia-
tion121. How these phosphorylations mediate the distinct 

cellular responses to irradiation and ultraviolet light has 
not been fully elucidated.

Although phosphorylation and acetylation are the 
best-studied p53 PTMs, in part because of the ease of 
mimicking modified and unmodified states, additional 
PTMs also have important roles in p53 regulation. Lysine 
methylation occurs at multiple residues and can activate 
or repress gene induction depending on the residue and 
the extent of methylation (monomethylation, dimethyl-
ation or trimethylation). Monomethylation of Lys382 
(mediated by the lysine methyltransferase (KMT) SETD8 
(also known as KMT5A))154 or dimethylation of Lys373 
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by G9a (KMT1C) and GLP (KMT1D)155 repressed p53 
and were accordingly reduced following DNA damage. 
However, abrogating the methylation of Lys373 (ref.155) 
and Lys382 (ref.154) during DNA damage led to prema-
ture apoptosis, suggesting the importance of low levels of  
p53 inhibition by these modifications. By contrast, mono-
methylation and dimethylation of Lys372 (catalysed by 
SETD7 (ref.156)) following DNA damage increased p53 
stability, gene activation and apoptosis157. Despite these 
effects, deletion of SET7/9 in mouse embryonic fibro-
blasts did not impair p53-induced apoptosis, senes-
cence, cell cycle arrest or tumour suppression158,159, 
consistent with data showing minimal effects of multi-
ple lysine-to-arginine mutations (including those at the 
Lys372 site)127,130,131. These results suggest that Lys372 
methylation may be more important for fine-tuning p53 
function than for overall activity. At two lysine residues, 
Lys370 and Lys382, the degree of methylation showed 
differing effects on p53 function. At both residues, 
dimethylation promoted p53 binding to p53-binding 
protein 1 (53BP1) and DNA repair160,161 (fig. 2b). 53BP1 
binding at Lys382 mediated this effect by inhibiting p53 
degradation161. By contrast, monomethylation of Lys370 
(mediated by SMYD2 (ref.156)) or Lys382 (mediated by 
SETD8 (ref.154)) inhibited p53 localization to target-gene 
promoters156,162 (fig. 2c). In the case of Lys382 mono-
methylation, this effect was mediated through spe-
cific methyl recognition by the transcription repressor 
L3MBTL1 (ref.162). Lys382 monomethylation inhibited 
p53 recruitment to both CDKN1A and PUMA promot-
ers, but it is not known whether monomethylation at 
either Lys370 or Lys382 affects p53 recruitment equally 
at all targets. In addition to Lys methylation, methyla-
tion of three p53 arginine residues by protein arginine 
N-methyltransferase 5 was found to induce cell cycle 
arrest genes but not apoptosis genes163. Although these 
examples demonstrate regulation of both cell cycle arrest 
and apoptosis by p53 PTMs, effects on apoptosis appear 
to be more prevalent. Because induction of apoptosis is 
irreversible, additional regulation of this process by p53 
PTMs may ensure that it is not selected prematurely.

The different p53 PTMs display considerable cross-
talk. Analysis of mutations of amino-terminal phospho-
rylation sites revealed several PTM interdependencies  
and a prominent role for Ser15 phosphorylation in indu-
cing the phosphorylation of Ser9, Thr18 and Ser20 (ref.125).  
Phosphorylation of Ser15 (ref.164), Thr18, Ser20 (ref.165), 
Ser33 and Ser37 (ref.126) promoted binding of the KATs 
PCAF, p300 and/or CREB-binding protein (CBP) and 
acetylation of the carboxy terminus. By contrast, Ser378 
phosphorylation inhibited PCAF-mediated acetylation 
of Lys320 (ref.126). Crosstalk between methylated residues 
also occurs, for example, Lys372 methylation inhibits 
SMYD2-mediated methylation at Lys370 (ref.156).

The interplay between acetylation and ubiquityl-
ation is crucial for regulating all functions of p53 by 
controlling its stability. In general, PTMs inhibit ubiqui-
tylation by decreasing binding of p53 to its E3 ubiquitin 
ligase MDM2 and/or by occluding the site of ubiquityl-
ation. Mutation of four lysine residues to nonmodifiable 
alanine residues or p53 CTD acetylation by overexpres-
sion of p300 or CBP166 impaired ubiquitylation despite 

maintaining efficient p53–MDM2 interactions, suggest-
ing that these residues may serve as ubiquitin accep-
tors130 rather than as MDM2 docking sites. A p53 protein 
bearing mutations of six lysine residues to nonacetylat-
able arginine residues (6KR) rendered p53-mediated 
transcriptional activation insensitive to MDM2, even in 
the absence of DNA damage167. Interestingly, in a p53 
protein bearing six acetylation-mimic mutations (lysine 
to glutamine), ubiquitylation was inhibited even more 
strongly than in the 6KR nonacetylated variant, suggest-
ing that acetylation interfered with ubiquitylation at dis-
tal sites168. Thus, PTMs regulate MDM2-mediated p53 
degradation both by occluding the p53 lysine substrates 
of MDM2 and by interfering with MDM2 binding. At 
the amino terminus, phosphorylation of Ser15 and Ser37 
by the DNA-dependent protein kinase catalytic subunit 
increased p53-mediated transcription in vitro by redu-
cing its binding to MDM2, in part by causing a confor-
mational change in p53 (ref.14); it is possible that Ser15 
phosphorylation additionally stabilizes p53 by promot-
ing carboxy-terminal acetylation164. However, the S15A 
p53 mutant did not have altered stability in vivo169, and it 
was later shown that phosphorylation of Ser15 promoted 
casein kinase 1-dependent phosphorylation of Thr18, 
which directly inhibited MDM2 binding170.

In summary, p53 PTMs likely have a role in regulat-
ing the strength of DNA binding, target-gene selection, 
stability and overall p53 function. The varying effects 
observed in vitro using reporter assays and between cell 
types highlight the complexity of p53 regulation through 
PTMs, and future work should elucidate how p53 PTMs 
act in concert to guide cellular responses.

Cofactors regulate p53 activity
In addition to chromatin context aiding in p53 target 
gene selection, p53 also cooperates intimately with chro-
matin regulators to activate its target genes (fig. 2d). The 
acetyltransferase p300 was required for p53-dependent 
activation of CDKN1A in vitro and in cells79,171 and led 
to an increase in the gene-activating histone H4 acetyl-
ation upon p53 activation42,171. Another study found 
that p53-mediated histone acetylation was equal at two 
different p53-binding sites despite differences in p53 
binding172, suggesting that cofactor recruitment may 
contribute to the activation of specific gene expression 
programmes by p53. Histone acetylation was compro-
mised in a nonphosphorylatable S15A p53 mutant43, 
consistent with recruitment of p300 by phosphorylation 
of this residue164 (fig. 2d). By contrast, in mouse ESCs, 
p53 repressed Nanog expression by recruiting histone 
deacetylases to chromatin173. Histone methylation also 
has an important role in target-gene regulation. At the 
CDKN1A promoter, p53 and p300 together recruited 
the methyltransferase SETD1A, leading to monomethyl-
ation and dimethylation of histone H3 Lys4, which are 
gene-activating PTMs174.

Unlike most pioneer transcription factors, which 
co-bind to targets with other transcription factors, p53 
binding elements associated with DDR genes were not 
associated with binding sites for other transcription 
factors40,175. During human ESC differentiation, how-
ever, p53 binding sites coincided with the binding motif  
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of the pluripotency factors OCT4 and SOX2 (ref.175) in 
several cases, suggesting that p53 might function differ-
ently in development than in DDR. Although, generally, 
other transcription factor motifs are not significantly 
co-enriched with p53 binding sites, several transcrip-
tion factors do interact with the p53 DBD to modulate 
target-gene expression. Apoptosis-stimulating of p53  
protein 1 (ASPP1) and ASPP2, which are transcriptional 
targets of E2F176,177, interact with the DBD of p53 (refs178–180) 
to specifically promote p53 binding at and expression  
of pro-apoptosis genes181. Apoptosis-antagonizing tran-
scription factor (AATF) also bound p53 through its 
DBD182 at promoters of apoptosis-inducing genes, such 
as PUMA, BAX and BAK1 (ref.183). Although AATF can 
induce p53 transcription, it also reduced p53 occupancy 
at these apoptosis-inducing gene promoters, thereby inhi-
biting apoptosis182. Thus, although ASPP1, ASPP2 and  
AATF have similar biochemical interactions with p53 
and DNA, they lead to opposite outcomes. p53-mediated  
apoptosis is further regulated by the pioneer factor 
SP1 (ref.184). Depletion of SP1 protected cells from p53- 
mediated apoptosis, and its overexpression switched the 
cellular outcome of p53 activation from cell cycle arrest 
to apoptosis185. Interestingly, global gene expression pro-
filing showed that SP1 depletion did not affect canon-
ical p53 target genes involved in apoptosis (BAX and 
NOXA1) or cell cycle arrest (CDKN1A and GADD45A) 
but was required for p53-dependent repression of genes 
in alternative pathways through co-binding with p53 at 

these genes106,185. Finally, the p53 target gene encoding 
zinc-finger protein 16 binds p53 and increases its bind-
ing to and transactivation of the cell cycle arrest genes 
CDKN1A and SFN but not apoptotic genes such as BAX, 
PERP, PUMA or NOXA1 (ref.186). Cofactor binding can 
also be influenced by p53 PTMs, as observed during 
Xenopus laevis development, in which p53 phosphoryl-
ation at Ser6 and Ser9 was required for the recruitment of 
Smad transcription factors to target genes187. As observed 
for p53 PTMs, cofactors also seem to preferentially regu-
late apoptotic genes, demonstrating the multiple layers 
of regulation to which this terminal process is subjected.

The p53 family members p63 and p73 were shown 
to have tumour suppressive roles and to enhance the 
p53 apoptotic function188–190. In contrast to the above- 
mentioned cofactors, p63 and p73 have the same DNA 
recognition sequence as p53; they can bind at the major-
ity of p53 binding sites and are thought to cooperate 
with p53 in the induction of p53 target genes24,32,191–193. 
Comparison of p63 and p53 ChIP data showed that p63 
can also bind to other genomic loci and has an additional 
and previously unrecognized role in DNA repair194. The 
roles of p53 family members, both together with and 
independently of p53, are still emerging, and further 
work is required to fully understand their function.

One difficulty to emerge from these studies is how to 
reconcile the examples of cofactors that are required for 
p53 function and specific activity with the observation 
that p53 binding sites tend not to co-occur with binding 
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sites for other transcription factors40. One possible expla-
nation is that cooperation of some cofactors with p53 
is specific to a small subset of genes, and thus, cofactor 
motifs may not be enriched in genome-wide analyses. 
The examples above also suggest that rather than hav-
ing an all-or-nothing effect, cofactors act by modulating 
the relative strength of p53 binding at different promot-
ers; this situation would be missed in the meta-analysis  
studies discussed above28,40.

The role of p53 dynamics
Not only do the absolute levels of p53 protein matter 
for the choice of cellular outcome in response to DNA 
damage but the changes in p53 levels over time (p53 
dynamics) also affect cell fate195–197. For example, ioniz-
ing radiation induces pulses of p53 protein levels, which 
allows cells to repair DNA damage and re-enter the cell 
cycle. Converting the pulses into sustained p53 activation 
using a combination treatment of ionizing radiation with 
MDM2 inhibition led to irreversible cell cycle arrest and 
senescence197. Another striking example is the response 
to the chemotherapeutic agent cisplatin, in which the rate 
of p53 accumulation determined whether the cells sur-
vived the treatment196. Therefore, temporal regulation of 
p53 protein levels is emerging as an additional modulator 
of cell fate control by p53.

Owing to the heterogeneity in p53 dynamics at 
the single-cell level196,198,199, identifying the molecular 
mechanisms that connect temporal changes in p53 
levels with global gene expression dynamics has been 
a challenge. Recent studies have focused on the gene 
expression response to p53 expression pulses induced 
by ionizing radiation104,197,200. In this case, synchrony of 
the initial p53 pulses between single cells was leveraged 
to perform population-level measurements of DNA 
binding and gene expression. A surprising diversity of 

gene expression dynamics was observed between p53 
target genes, which exhibited different timing, levels 
and patterns of induction. For example, some target 
genes, such as CDKN1A, showed pulses in mRNA levels 
following p53 protein pulses, whereas others, such as 
DDB2, reached a plateau of expression or, like RPS27L, 
continuously accumulated. Surprisingly, p53 DNA bind-
ing dynamics were indistinguishable between the genes 
that exhibited different mRNA expression dynamics. 
Mathematical modelling and perturbation experiments 
showed that mRNA dynamics were largely explained 
by the mRNA stability of p53 target genes104,200,201, with 
unstable transcripts tracking p53 protein dynamics 
and long-lived mRNAs integrating p53 levels over time 
(fig. 3). Moreover, knowledge of p53 protein dynamics 
and mRNA stability of a target gene were sufficient not 
only to explain but also to predict target-gene induction 
dynamics in response to different p53 dynamics104.

Interestingly, clustering genes on the basis of their 
dynamic patterns of induction did not distinguish 
between apoptotic and cell cycle arrest genes, suggesting 
that the timing of mRNA expression was not sufficient 
to explain the cellular outcome. Furthermore, the con-
nection between gene expression and cell fate may not 
be determined by the expression levels of a single gene 
but by the relative expression levels of multiple genes. 
Indeed, the ratio of expression between p21 and PUMA 
was important for the decision between cell cycle arrest 
and apoptosis202. It is indeed more likely that cell fate 
is coordinated between multiple genes and that relative 
dynamics and abundance of proteins — which vary with 
different p53 expression dynamics104,200 — ultimately 
determine the cellular outcome.

Finally, we propose that the temporal dynamics of 
p53 expression should be taken into consideration when 
defining p53 target genes. We expect that different p53 
protein dynamics occurring in response to different types 
of DNA damage are a source of variability in target-gene 
identification between studies. Indeed, depending on the  
type of DNA damage and the time point of measure-
ment, differential expression of target genes may be 
missed. For example, the induction of a short-lived 
mRNA will be missed if its expression is measured too 
long (longer than the mRNA half-life) after p53 levels 
have decreased. By contrast, a stable mRNA may need 
more time to reach the fold-change cut-off and thus may 
be filtered out in early time points (fig. 3). As an alter-
native to performing time course experiments to detect 
target genes, a recent study showed that the confound-
ing effects of mRNA half-life on identification of direct 
p53 target genes can be circumvented by measuring 
nascent RNA rapidly following p53 induction (to avoid  
secondary transcriptional waves) by GRO-seq37.

Conclusion
Following decades of research, the role of p53 in con-
trolling stress-specific responses remains a puzzle. 
Recent genome-wide analyses showed that p53 robustly 
binds to a conserved set of genomic loci independently 
of cell type and treatment. By contrast, studies of spe-
cific target genes suggested that the strength of DNA 
binding and binding to noncanonical sites are tunable 
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by chromatin structure, p53 PTMs, interaction with 
cofactors and temporal changes in p53 protein levels 
(fig. 4). Additionally, post-transcriptional controls of 
gene expression, such as mRNA stability, have an impor-
tant role in the observed heterogeneity in target-gene 
expression. The large number of p53 regulatory mech-
anisms and their cooperation in triggering specific 

expression programmes remain open areas for investi-
gation. Systematic measurements in multiple conditions 
together with models integrating the multiple layers of 
regulation on p53 activity will be required to decipher 
the complexity of p53 function.
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