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SUMMARY
Genome-wide association studies (GWASs) have uncovered numerous trait-associated loci across the hu-
man genome, most of which are located in noncoding regions, making interpretation difficult. Moreover,
causal variants are hard to statistically fine-map at many loci because of widespread linkage disequilibrium.
To address this challenge, we present a strategy utilizing transcription factor (TF) binding quantitative trait
loci (bQTLs) for colocalization analysis to identify trait associations likelymediated by TF occupancy variation
and to pinpoint likely causal variants using motif scores. We applied this approach to PU.1 bQTLs in lympho-
blastoid cell lines and blood cell trait GWAS data. Colocalization analysis revealed 69 blood cell trait GWAS
loci putatively driven by PU.1 occupancy variation. We nominate PU.1 motif-altering variants as the likely
shared causal variants at 51 loci. Such integration of TF bQTL data with other GWAS data may reveal tran-
scriptional regulatory mechanisms and causal noncoding variants underlying additional complex traits.
INTRODUCTION

A recurring challenge in genome-wide association studies

(GWASs) is the difficulty of identifying causal variants as well

as formulating corresponding variant-to-function (V2F) hypothe-

ses.1 Pinpointing causal variants is important because it guides

subsequent validation experiments2–4 and development of po-

tential therapies.5 More precise identification of causal variants

(e.g., fine-mapping) also leads to better genetic risk predictions

across various traits and diseases.6,7 However, widespread link-

age disequilibrium (LD) typically prevents effective statistical

fine-mapping, especially for common variants.1,8 Moreover,

most of the genome-wide significant loci are noncoding and

likely have regulatory functions.9,10 Variants predicted to affect

transcription factor (TF) binding across the genome explain a

large proportion of genetic associations with traits (i.e., heritabil-

ity enrichment).11,12 In practice, noncoding variants are much

harder to interpret than coding variants because predicting the

effects of noncoding variants on TF binding in vivo is challenging.

Some commonly used approaches to predict affected TFs

include searching for overlapping TF chromatin immunoprecipi-

tation sequencing (ChIP-seq) peaks13,14 and TF binding site

motifs.8,15 However, such approaches lack evidence specifically

demonstrating the variants’ effects on in vivo TF binding.

Furthermore, many TFs within a TF family recognize very similar

motifs16 while also binding to distinct genomic loci,17 adding to

the challenge of pinpointing the causal TF. Therefore, an
This is an open access article under the CC BY-N
approach to effectively pinpoint regulatory variants and their ef-

fects on in vivo TF binding at individual GWAS loci is essential.

An effectivemethod to capture the genetic effects on in vivo TF

binding is TF binding quantitative trait loci (bQTLs)18–20 (i.e.,

genomic loci where the TF occupancy level, as measured by

ChIP-seq, is significantly associated with a genetic variant). An

earlier study attempted to link specific TF bQTLs to individual

GWAS loci simply based on a single variant’s association

signal,19 but this method is prone to false positive findings

because the two associations could be driven by distinct

variants merely in LD with each other.21 Instead, we aimed to

link TF bQTLs and GWAS loci by applying colocalization

analysis,21–24 which is a widely accepted statistical approach

to specifically test the hypothesis that genetic signals are shared

between a pair of traits (e.g., TF binding and GWAS trait). Signif-

icant colocalization suggests that a genetic variant affects TF

binding as well as the studied downstream trait.25

A key benefit of TF bQTL colocalization lies in the observation

that TF binding variation is often driven by variants altering the

motif of the corresponding TF at its binding site.26,27 With a TF

motif model, such as gapped k-mer support vector machine

(gkm-SVM),28,29 we can recognize a variant that overlaps the

TF’s binding motif and changes its predicted affinity in the direc-

tion concordant with the changes in TF binding level. This is ad-

vantageous because we can pinpoint such amotif-altering variant

at the binding site even when association statistics alone cannot

readily identify the likely causal variant because of LD. In other
Cell Genomics 3, 100327, July 12, 2023 ª 2023 The Author(s). 1
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Figure 1. Relevance of PU.1 bQTLs in LCLs

to blood cell trait associations

(A) Left: blood cell trait-associated loci may have

overlapping PU.1 bQTLs and, potentially, expres-

sion QTL (eQTL) associations. Right: significant

colocalization suggests that the causal variants are

shared. If there is a PU.1 motif-altering variant at a

colocalized PU.1 bQTL, then the variant is likely to

be the shared causal variant. exp, expression.

(B) Comparison of changes in motif score (D gkm-

SVM) and estimated bQTL effect sizes at PU.1

motif-altering variants within the 200-bp PU.1

ChIP-seq peaks. The color represents the –log10(p)

of PU.1 bQTL association (linear regression). The

insets show examples of variants’ effects on PU.1

gkm-SVM score and their nucleotide change

within a PU.1 motif. At the variant position, the top

and bottom bases are reference and variant al-

leles, respectively.

(C) Number of significant PU.1 bQTLs with PU.1

motif-altering variants at each region within the

200-bp PU.1 ChIP-seq peaks. ***: p < 2.2 3 10�16

(Fisher’s exact test).

See also Figures S1 and S2 and Tables S1 and S2.
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words, if some TF’s bQTL significantly colocalizes with a GWAS

signal, and that TF’s motif-altering variant is among the top asso-

ciated variants, then that variant is likely to explain the GWAS

association. We contrast this with expression QTL (eQTL) or

methylation QTL (mQTL) colocalization,30,31 where the TF is un-

known. By pinpointing the candidate causal TF in a GWAS locus

through TF bQTL colocalization, we can also prioritize the corre-

sponding TF motif-altering variants as the likely causal regulatory

variants underlying TF binding variation and the GWAS traits.

Hence, we present a strategy (1) to analyze colocalization of

TF bQTLs at GWAS loci to highlight TF binding sites that poten-

tially mediate the GWAS associations25 and (2) to utilize TF motif

models to nominate variants altering the corresponding TF

motifs at those binding sites as likely shared causal variants un-

derlying both phenotypes (Figure 1A). By performing TF bQTL

colocalization analysis with GWAS data to fine-map putative

causal variants that affect in vivo TF binding within individual

GWAS loci, we aim to add to the understanding of the direct mo-

lecular consequences of trait-associated genetic variation.
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We carried out this strategy with

blood cell trait GWAS32 and bQTL data

for the hematopoietic master regulator

PU.1 from lymphoblastoid cell lines

(LCLs),18,26 which are immortalized B

cell lines. PU.1 bQTLs in neutrophils

have been found previously to colocalize

with immune disease susceptibility loci

but have not been used to fine-map the

causal variants.25 Blood cell traits (e.g.,

lymphocyte counts, hemoglobin concen-

trations) are indicators of various dis-

eases; for instance, individuals with low

lymphocyte counts are more susceptible

to infections, including severe coronavi-
rus disease 2019 (COVID-19).33–35 PU.1 has a role in specifying

myeloid and lymphoid lineages during hematopoiesis,36,37 and

SPI1, the gene encoding PU.1, is expressed throughout progen-

itor cell types38 (Figure S1). A recent fine-mapping analysis of

blood cell trait GWASs reported that PU.1 was the TF with the

highest number of fine-mapped noncoding variants altering its

DNA binding site motif,15 suggesting that PU.1 motif-altering

variants might drive many blood cell trait association signals.

To identify blood cell trait associations that may be driven by a

variant altering PU.1 binding, we analyzed publicly available

PU.1 ChIP-seq data from LCLs across 49 individuals18,26 and

identified 1,497 PU.1 bQTLs. PU.1 bQTLs colocalized with at

least one blood cell trait association at 69 loci; for 51 of these

loci, we identified PU.1 motif-altering variants as the likely causal

variants. Our approach allowed us to overcome the limitations of

statistical fine-mapping in resolving these GWAS signals to sin-

gle causal variants. Most of those PU.1 motif-altering variants

were also associated with other regulatory phenotypes, such

as chromatin accessibility and histone mark levels, in LCLs. By
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also incorporating transcriptome data for LCLs, we identified

several putative causal genes for traits, including lymphocyte

and monocyte counts. Our results illustrate the utility of TF

bQTL datasets for fine-mapping trait-associated noncoding

loci and in generating mechanistic V2F models of gene dysregu-

lation for traits of biomedical importance.

RESULTS

PU.1 motif-altering variants are likely causal for PU.1
bQTL associations
First, we reanalyzed available PU.1 ChIP-seq data for LCLs from

49 individuals.18,26 These individuals are all of European ancestry,

and their genotypes are available through the 1000GenomesProj-

ect39 (Table S1). After peak calling and normalization of the PU.1

ChIP-seq read counts, we tested for significant genetic associa-

tions with common variants (minor-allele frequency [MAF] > 0.05)

within 100 kb of each ChIP-seq peak. In total, we identified 1,497

significant PU.1 bQTLs (false discovery rate [FDR] < 5%).

We next inspected the contribution of PU.1 motif-altering var-

iants to PU.1 bQTLs. First, we verified that PU.1-occupied re-

gions were enriched for a match to the PU.1 binding site motif,

identified by a position weight matrix (PWM), near the center of

the ChIP-seq peaks (Figure S2A). This suggests that most of

these sites are bound directly by PU.1. Next, we evaluated

whether PU.1 motif-altering variants affect PU.1 binding by

training a motif score model gkm-SVM to learn gapped k-mers

that are overrepresented in PU.1-occupied sequences. PU.1

can bind DNA as a monomer and as a heterodimer with either

interferon regulatory factor 4 (IRF4) or IRF8,40 and the model

correctly captured PU.1 and PU.1:IRF composite motifs (Fig-

ure S2B). Changes in gkm-SVMscores predict effects of variants

on TF binding better than PWMs,41 which imprecisely assume

each nucleotide to affect binding independently. Consistent

with our expectations, the predicted change in gkm-SVM scores

for single-nucleotide polymorphisms (SNPs) within PU.1 motifs

was significantly correlated with estimated PU.1 bQTL effect

sizes (Pearson r = 0.80, p = 3.6 3 10�310; Figure 1B; Table S2).

This strong positive correlation supports the model that PU.1

motif-altering variants, if present, are likely causal for those

PU.1 bQTLs. Furthermore, significant PU.1 bQTLs with a motif-

altering variant (determined by gkm-SVM) showed that such var-

iants are more concentrated toward the peak centers compared

with PU.1 bQTLs without one (two-sided Fisher’s exact test, p =

3.1 3 10�18; Figure 1C), consistent with the expectation that

PU.1 motif-altering variants directly affect PU.1 occupancy.

Hence, we considered that PU.1 bQTLs colocalized with blood

cell trait association would likely be driven by PU.1 motif-altering

variants, if present (Figure 1A).

PU.1 binding sites and PU.1 bQTLs in LCLs are enriched
for blood cell trait association
To verify the relevance of these PU.1 bQTLs for investigations of

blood cell traits, we evaluated whether the PU.1 bQTLs are more

likely to be significantly associated with blood cell traits than ex-

pected by chance. We analyzed GWAS data for 28 blood cell

traits from the UK Biobank32 (Table S3). As a background expec-

tation, we constructed 250 sets of null variants matched with
PU.1 bQTL lead variants for allele frequency, number of tagging

variants (LD r2 > 0.5), and distance to the closest transcription

start site (TSS). The significant PU.1 bQTLs were more likely to

tag lead variants associated (i.e., p < 53 10�8) with myeloid line-

age traits (e.g., monocyte and neutrophil count) and lymphoid

lineage traits (e.g., lymphocyte count) than the sets of null vari-

ants (adjusted empirical p < 0.05) (Figures 2A and S2C). This is

consistent with the known role of PU.1 in myeloid and lymphoid

differentiation.36,37 In contrast, PU.1 bQTLs were not enriched

for other traits like type 2 diabetes or height (Figures 2A

and S2D).

PU.1 bQTL colocalization with blood cell trait
associations
To identify candidate loci to test for potential colocalization of

PU.1 bQTL and blood cell trait associations, we filtered all signif-

icant PU.1 bQTLs for loci with at least one blood cell trait asso-

ciation at p < 10�6. We reasoned that suggestive loci with

p < 10�6 that colocalize with PU.1 bQTLs could be weaker, but

likely functional, associations. This resulted in a total of 1,621

such PU.1 bQTL-trait pairs, comprising 367 unique loci. We

then applied two distinct colocalization methods, joint likelihood

mapping (JLIM)23 and Coloc,22 to test for robust colocalization

(Table S4). JLIM is a frequentist method testing the significance

of the shared association by a permutation p value, while Coloc

is a Bayesian method estimating the posterior probability of co-

localization. Each method can exhibit different performance de-

pending on the LD structure of the loci;23 therefore, we reasoned

that requiring significant colocalization by both methods would

enrich true positive cases. We used a significance threshold of

p < 0.01172 (FDR < 5%) for JLIM and posterior probability of co-

localization (PP[colocalization]) > 0.5 for Coloc.

The statistically significant colocalization of PU.1 bQTL-trait

pairs identified by JLIM and Coloc was overall consistent (Pear-

son r = 0.73, p = 6.83 10�270; Figure 2B). We identified a total of

190 (11.7%) PU.1-trait pairs, spanning 69 unique loci, that were

significant by both methods. We also found 1,196 (73.8%) cases

where a variant that was significant for PU.1 bQTL and blood cell

traits did not exhibit significant colocalization by either JLIM or

Coloc. This highlights the importance of performing colocaliza-

tion analysis to distinguish loci with statistical evidence of shared

causal variants from those where the variants associated with

each trait are merely in LD with each other.21 The remaining

235 (14.5%) pairs showed discordant results between the two

methods, which could potentially stem from lack of statistical

power due to weak association signals or many variants showing

high LD with the lead variant (Figure S3; Note S1). This discrep-

ancy justifies the rationale of applying both methods to identify

high-confidence colocalization.

Most (56 of 69) loci showing high-confidence colocalization

had some biologically plausible putative causal variants that

directly affect PU.1 binding sequences (Figures 2C and S4A;

Table S5). 43 (62.3%) loci had a SNP altering a PU.1 motif, while

7 (10.1%) had a short insertion or deletion (indel) variant. In

addition, there was one locus where two adjacent SNPs were

in perfect LD (r2 = 1) and altered a single PU.1 motif sequence

(Figure S4A; Table S6). These SNPs and short indels showed a

balance of gained and lost PU.1 binding (two-sided binomial
Cell Genomics 3, 100327, July 12, 2023 3



Figure 2. Colocalization of blood cell trait GWAS and PU.1 bQTLs

(A) Enrichment of PU.1 bQTLs for associations with specific blood cell traits and control traits (i.e., height and type 2 diabetes). Traits with empirical adjusted

p < 0.05 (above the dashed line) and control traits are labeled. Lym, lymphocyte; Neut, neutrophil; Mono, monocyte. Abbreviations of blood cell traits are further

described in Table S3.

(B) Colocalization results from JLIM and Coloc. Each point is a PU.1 bQTL-trait pair. The number shown in each quadrant is the number of points within the

significance category. Dashed lines indicate the respective significance thresholds (JLIM, p < 0.01172 [FDR 5%]; Coloc, PP[colocalized] > 0.5).

(C) The types of putative causal variants at colocalized PU.1 bQTLs that alter PU.1 motifs or the copy number of the PU.1 occupancy site. SNPs, indels, and

multivariants alter PU.1 motifs. CNV, copy number variation altering the copy number of PU.1 binding sites; Multi, multiple variants in perfect LD (r2 = 1) within a

PU.1 motif sequence; Unk (unknown), No variant-altering PU.1 motif sequence or its copy number.

(D) Number of PU.1 motif-altering SNPs at each nucleotide position at colocalized PU.1 binding sites. Motif logos are from the Homer42 database.

(E) Blood cell trait GWAS credible set size at loci with colocalized PU.1 bQTLs and a PU.1 motif-altering variant. Only 25 loci with fine-mapping result in Vuckovic

et al.8 are represented.

See also Figures S3 and S4; Tables S3, S4, S5, S6, S7, S8, and S9; and Note S1.
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test, p = 0.67), and changes in gkm-SVMmotif scores were high-

ly correlated with the estimated PU.1 bQTL effect sizes (Pearson

r = 0.89, p = 5.2 3 10�18; Figure S4B). The PU.1 motif-altering

SNPs at colocalized loci were distributed within the PU.1 or

PU.1:IRF motif, with the highest frequencies at the core

‘‘GGAAG’’ positions (Figure 2D; Table S7). There were also 5

loci with large deletions that completely removed the PU.1 bind-

ing site, which we were able to uncover because the 1000 Ge-

nomes Project (1KGP)39 genotypes included structural variants

(Figure S4C). Whether the deletions are true causal variants will

need to be tested experimentally in future studies. From here

on, ‘‘PU.1 motif-altering variants’’ refers to the 51 variants that

are not structural variants.

To evaluate the benefits of our approach in pinpointing the pu-

tative causal variant and TF, we retrieved fine-mapping results

for 25 colocalized loci with a PU.1 motif-altering variant (i.e.,
4 Cell Genomics 3, 100327, July 12, 2023
SNP or indel) from a recent blood cell trait GWAS study8 (Note

S2). 19 of these 25 (76%) loci had more than 10 variants in the

95%credible set (i.e., minimal set of variants that have 95%pos-

terior probability of containing the causal variant), none of which

was fine-mapped to a single variant (Figure 2E; Table S8).

Without TF bQTL colocalization, existing approaches to narrow

down candidate variants and hypothesize the causal TF typically

include filtering for variants in accessible chromatin and scan-

ning for any TF motif alterations.15 When we applied such an

approach to the 25 PU.1 bQTL colocalized loci, it still led to

multiple candidate variants (on average, 4.9 variants per locus),

corresponding to numerous LCL-expressed (transcripts per

million [TPM] > 1) TFs with motif alterations (on average, 13.8

unique TFswith amotif alteration per SNP; Table S9). In contrast,

despite the difficulty in fine-mapping due to LD structure, we

were able to pinpoint single putative causal variants in these



Figure 3. Distribution of colocalized loci across the genome

(A) Proportion of tested loci with significant colocalization. The colors represent the trait groups. The blood cell traits highlighted in yellow correspond to white

blood cell traits. Baso, basophil; Eosino, eosinophil; WBC, white blood cell; Hb conc, hemoglobin concentration; Ht, hematocrit; MCH, mean corpuscular he-

moglobin; MCV, mean corpuscular volume; MSCV, mean sphered corpuscular volume; RBC, red blood cell; dist, distribution; HLSR, high-light-scatter reticu-

locyte; Imm ret frac, immature reticulocyte fraction; Ret, reticulocyte; MPV, mean platelet volume; Plt, platelet. Abbreviations of blood cell traits are further

described in Table S3.

(B) Fuji plot depicting the genomic distribution of blood cell trait-associated loci that show high-confidence colocalizationwith PU.1 bQTLs. Tracks are colored by

trait group as in (A).

(C) Number of traits with which each PU.1 bQTL colocalizes. The panel is at the center. Bars representing each trait are stacked at each locus.
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loci using a specific TF’s (i.e., PU.1) motif information. Because

PU.1 bQTL colocalization nominates PU.1 as the causal TF in

those blood cell trait GWAS loci, it also narrows down the search

for putative causal variants to PU.1 motif-altering variants.

Across the blood cell traits, those related to white blood cells

(e.g., white blood cell count, lymphocyte count, neutrophil count)

showed a higher proportion of the tested loci showing colocali-

zation than red blood cell or platelet traits (Figure 3A). This rela-

tive enrichment is similar to that of tagging variants observed in

Figure 1B. Some loci showed association withmultiple blood cell
traits; those traits were mostly closely related, like neutrophil

count and neutrophil percentage (Figures 3B and 3C).

Most PU.1 bQTLs alter chromatin activity, and some
affect gene expression
Additional regulatory phenotype data allowed us to derive spe-

cific hypotheses about gene-regulatory mechanisms that are

perturbed by the variants. First, we reanalyzed assay

for transposase-accessible chromatin using sequencing

(ATAC-seq)43 and histone mark ChIP-seq data for LCLs44 to
Cell Genomics 3, 100327, July 12, 2023 5
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Figure 4. Regulatory effects of the colocalized PU.1 motif-altering variants

(A) Number of colocalized PU.1motif-altering variants that overlap ATAC-seq or histonemark (H3K27ac or H3K4me1) ChIP-seq peaks and that are in LD (r2 > 0.8)

with those regulatory QTLs.

(B) Upset plot showing the number of colocalized PU.1 motif-altering variants that are in LD (r2 > 0.8) with different sets of regulatory QTLs. caQTL, chromatin

accessibility QTL; hQTL, histone QTL.

(C) Comparison of PU.1 bQTL effects (i.e., regression effect size) with other regulatory QTL effects. Each point corresponds to a PU.1 motif-altering variant. The

colors match those in (A). The error bars represent standard errors. Pearson correlation coefficient is calculated only for those points showing significant reg-

ulatory QTLs.

(D) Comparison of PU.1 bQTL effects and PU.1 ChIP-seq allelic imbalance effect (i.e., log2[allelic fold change] estimated from weighted linear regression). The

effect is with respect to the alternate alleles. The error bars represent standard errors.

(E) Comparison of PU.1 bQTL effects with eQTL effects. Each point corresponds to a PU.1motif-altering variant. For rs3808619, which hadmultiple eQTL signals,

only the value for the closest gene, ZC2HC1A, is shown. The error bars represent standard errors.

See also Tables S10, S11, S12, S13, and S14.
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generate QTL statistics for chromatin accessibility and active

histone mark (histone H3 lysine 27 acetylation [H3K27ac] and

histone H3 lysine 4 monomethylation [H3K4me1]) levels. These

chromatin phenotypes can indicate regulatory regions in the

genome,45,46 and a direct consequence of PU.1 binding alter-

ation is likely to be in the cognate chromatin region. In fact, the
6 Cell Genomics 3, 100327, July 12, 2023
majority (>60%) of the colocalized PU.1 binding sites with PU.1

motif-altering variants showed overlap with each of the chro-

matin phenotypes (Figure 4A). The presence of PU.1 binding

sites that are not accessible is consistent with earlier observa-

tions.47 Moreover, there were significant QTL signals

(FDR < 5%) that were in LD (r2 > 0.8) with the PU.1 motif-altering
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variants in more than 70% of the overlapping peaks. 20 of the

PU.1 bQTLs showed chromatin accessibility QTLs (caQTLs),

H3K27ac histone QTLs (hQTLs), and H3K4me1 hQTLs, while

16 showed at least one of the three (Figure 4B; Tables S10,

S11, and S12). These effects all showed concordant directions

as the effects of PU.1 motif-altering variants on PU.1 binding

(Figure 4C). Thus, most PU.1 motif-altering variants are sup-

ported by measured chromatin effects. The rest of the variants

may show chromatin effects in a different cellular context.

To further corroborate the variants’ effect on PU.1 binding, we

estimated their ChIP-seq allelic imbalance effects in heterozy-

gous individuals. A PU.1 motif-altering variant that is causally

associated with PU.1 binding would exhibit allelic imbalance sig-

nals that are consistent with estimated bQTL effects.48,49 For all

44 PU.1 motif-altering SNPs, the estimated allelic imbalance ef-

fects showed directions and magnitudes that are concordant

with those of the PU.1 bQTL estimates (Pearson r = 0.94, p =

4.2 3 10�43; Figure 4D; Table S13).

We next searched to see whether PU.1 motif-altering variants

that colocalized with blood cell trait association signals were in

LD (r2 > 0.8) with eQTLs in LCLs. Interestingly, just 9 PU.1

motif-altering variants were in LD with eQTL lead variants, and

onewas in LDwith a secondary eQTL signal (i.e., a weaker signal

independent of the strongest, primary eQTL; Table S14). Nine of

10 of these variants showed the same effect directions for PU.1

bQTLs and eQTLs (Figure 4E). The remaining colocalized PU.1

motif-altering variants might drive eQTL signals under other

experimental conditions and/or cell types. Among the examples

with an eQTL signal in LCLs, we selected 3 loci to describe

further. We show one example where a PU.1 motif-altering

SNP (rs12517864) represents a secondary eQTL for ZNF608 in

LCLs, and only this secondary signal colocalizes with lympho-

cyte count association. An eQTL-centric analysis in LCLs would

have missed this locus without accounting for multiple indepen-

dent signals, highlighting the power of the use of TF bQTL data in

colocalization analysis with GWAS data. Two other examples

show reporter assay results corroborating the regulatory effects

of PU.1 motif-altering variants identified in colocalized loci.

bQTL colocalization reveals a putative causal variant
that is not the primary eQTL
Causal genes at a trait-associated locus frequently have been

identified using eQTL data for nearby genes.50,51 However,

eQTLs can often have multiple independent signals,51 and these

signals detected in any one cell type may not all be associated

with a GWAS trait, such as when the regulatory effects manifest

themselves only in certain cellular contexts. This complicates

colocalization analyses that often assume a single shared causal

variant at a locus.22,23 In contrast, TF bQTLs capture regulatory

effects of individual regulatory elements. Therefore, TF bQTL co-

localization analysis can isolate the effects of variants on specific

regulatory elements, lowering the probability of multiple causal

variants compared with that of eQTLs.

For example, the ZNF608 locus shows significant colocaliza-

tion of PU.1 bQTLs and lymphocyte count association (JLIM

p = 2.0 3 10�5 and Coloc PP[colocalization] = 0.78; Figures 5A

and S5A; Table S4). As expected, the top association signal for

PU.1 binding and lymphocyte count align (Figure 5A). The exact
molecular function of ZNF608 remains unclear. Nonetheless, a

study of follicular lymphoma (FL), a type of cancer in which B

lymphocytes divide uncontrollably, found ZNF608 to be among

the 39 genes significantly enriched for missense or predicted-

loss-of-function (pLOF) somatic mutations in FL patients.52

This finding suggests that the gene may play a role in B lympho-

cyte development. The associated PU.1 binding site is located

about 257 kb upstream of the ZNF608 promoter, and the SNP

rs12517864, which increases the PU.1 binding motif score

(0.68/2.69), is located near the center of the PU.1 occupancy

site (Figure 5B).

Multiple lines of evidence support the regulatory effect of

rs12517864. Based on our reanalysis of ATAC-seq43 and histone

mark ChIP-seq data for LCLs,44 we found that rs12517864 is

significantly associated with each of these molecular phenotypes

that overlap the PU.1 binding site (Figures 5C and 5D). This obser-

vation suggests that the variant, if causal, likely affects gene

regulation. Consistent with the observation that PU.1 is generally

an activator,56,57 increased PU.1 binding was associated with

increased chromatin accessibility and active histone marks—

H3K27ac and H3K4me1 (p = 1.9 3 10�24, 9.0 3 10�20, and

1.4310�10, respectively; TablesS10,S11, andS12).Furthermore,

the variant falls within a fragment that physically interacts onlywith

the ZNF608 promoter in primary B cells according to promoter-

capture Hi-C (PCHi-C) data,53 supporting the model that

rs12517864 directly regulates ZNF608 (Figure 5E).

Surprisingly, initial inspection of ZNF608 eQTL signals in

LCLs58 seemed contradictory because the lead variant for this

eQTL (rs2028854) is located elsewhere, 200 kb upstream of

the ZNF608 promoter, and is not strongly associated with

lymphocyte count32 (p = 0.04; Figures 5E and 5F). We therefore

examined the possibility of multiple independent ZNF608 eQTL

signals in LCLs by performing a conditional analysis on the

lead variant as well as fine-mapping using the ‘‘sum of single ef-

fects’’ (SuSiE) model,54 which can detect multiple signals. When

conditioned on the lead eQTL SNP rs2028854, association of

rs12517864 to ZNF608 expression became much stronger (p =

2.03 3 10�7), with a positive effect direction (Figure 5F;

Table S14). The effect direction is consistent with the increased

chromatin activity of the enhancer by rs12517864 (Figure 5D).

Moreover, the fine-mapping analysis identified two independent

credible sets for ZNF608 eQTL signal, one of which contained

rs12517864 as the variant with the highest posterior inclusion

probability (PIP = 0.07), demonstrating that this variant is likely

to be causally associated with ZNF608 expression level

(Figure 5G).

Because only one of the two independent ZNF608 eQTL sig-

nals in LCLs is associated with lymphocyte count, we hypothe-

sized that even though both SNPs are significant eQTLs in

LCLs, only rs12517864 (i.e., the secondary eQTL signal), and

not rs2028854 (i.e., the primary eQTL signal), modulates

ZNF608 expression in the causal cell type. Analysis of RNA-

seq data for various blood cells38 revealed that ZNF608 is highly

expressed in common lymphoid progenitors and B cells (Fig-

ure 5H). Inspection of eQTL data for B cells in the eQTL Cata-

logue55,59 showed that only rs12517864, and not rs2028854

(p = 0.25), is significantly associated with increased ZNF608

expression (p = 4.39 3 10�5; Figure 5I). Although we cannot
Cell Genomics 3, 100327, July 12, 2023 7



Figure 5. PU.1 motif alteration pinpoints a lymphocyte-count-associated variant that is a secondary ZNF608 eQTL variant

(A) PU.1 bQTL and lymphocyte count association signals. The PU.1 motif-altering variant rs12517864 is shown as a purple diamond, and the ZNF608 eQTL lead

variant rs2028854 is shown as a yellow diamond. Vertical dashed lines mark the position of these two variants. Points are colored by LD r2 with respect to

rs12517864.

(B) The effect of rs2028854 on the sequence with respect to the PU.1 binding motif.

(C) ZNF608 locus genome tracks of PU.1 ChIP-seq, ATAC-seq, and H3K4me1 and H3K27ac ChIP-seq assayed in GM12878.

(D) Boxplots of the effect of rs12517864 dosage on various molecular phenotypes shown in (C), using the same colors. For PU.1 ChIP-seq data, there were no

individuals with a homozygous alternate allele (AA). All data points are superimposed over the boxplots.

(E) Gene track showing ZNF608 and the two variants. The weights of the red curves indicate the capture Hi-C analysis of genomic organization (CHiCAGO) scores

calculated by Javierre et al.,53 representing physical interaction.

(F) Top: primary ZNF608 eQTL signals in LCLs. LD r2 is calculated with respect to rs2028854, the lead variant. Bottom: ZNF608 eQTL signals in LCLs conditioned

on the rs2028854 dosage. Points are colored as in (A).

(G) Fine-mapping result of ZNF608 eQTL signals in LCLs, using SuSiE.54 Points are colored by the credible set to which they belong. PIP, posterior inclusion

probability.

(H) Boxplots of ZNF608 expression levels (count per million [CPM]) through lymphocyte differentiation and across various lymphocyte types. All data points are

superimposed over the boxplot. HSC, hematopoietic stem cell; MPP, multipotent progenitor; LMPP, lymphoid-primed multipotent progenitor; CLP, common

lymphoid progenitor; B, B cell; CD4T, CD4+ T cell; CD8T, CD8+ T cell; NK, natural killer.

(I) ZNF608 eQTL association signals in naive B cells (Database of Immune Cell Expression, Expression Quantitative Trait Loci and Epigenomics [DICE]55). Points

are colored as in (A).

See also Figure S5.
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Figure 6. PU.1 motif-altering deletion rs5827412 at the LRRC25 locus associated with lower monocyte counts

(A) Association Z scores of variants in the locus with PU.1 binding and monocyte percentage. The sign of the Z score is the effect direction of the AA of each

variant. The points are colored by LD r2 with respect to rs5827412 (purple diamond).

(B) The effect of rs5827412 on the PU.1 motif. Dashes indicate gaps in the alignment, reflecting the short deletion.

(C) Negative allelic skew (i.e., reduced reporter activity) by rs5827412 in log2 fold change. Error bars indicate 95% confidence intervals. *: adjusted p < 0.05.

(D) A boxplot showing PU.1-dependent reduction in chromatin accessibility levels (CPM) at the regulatory element surrounding rs5827412 in control pro-B cell

lines (SPI1+/+) and counterparts with SPI1 knocked out (SPI1�/�). Regions highlighted in yellowmarks the accessible region corresponding to the boxplot. All data

points are superimposed over the boxplot. n = 3 for each condition. *: DESeq2-adjusted p < 0.05.

(E) A boxplot showing LRRC25 expression levels (CPM) through monocyte differentiation. All data points are superimposed over the boxplot. CMP, common

myeloid progenitor; GMP, granulocyte-macrophage progenitor.

(F) Mono LRRC25 eQTL association. Downward and upward triangles indicate the direction of effect (down- and upregulation, respectively) for variants with

p < 1 3 10�3. A purple triangle and dashed line mark rs5827412.

(G) LRRC25 locus ATAC-seq tracks as fold enrichment over average (range, 0–40) for various blood cell types throughmonocyte differentiation. A purple diamond

and dashed line mark rs5827412.

See also Figure S6 and Note S2.
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unambiguously conclude that B cells are the causal cell type,

rs12517864 is likely the only variant that increases lymphocyte

count through increased ZNF608 expression (Figure S5B).

Because the ZNF608 locus demonstrates an interesting ge-

netic architecture, we searched for additional such examples.

Based on conditional eQTL analysis, the ZNF608 locus was

the only example with a PU.1 motif-altering variant representing

a secondary eQTL signal. We also applied statistical fine-map-

ping54 on eQTLs at PU.1 bQTL colocalized loci to look for

GWAS loci with only one of multiple eQTL signals colocalizing.

However, the ZNF608 locus was the only example with a gene

with more than one independent eQTL signal at blood cell trait

GWAS loci that colocalized with PU.1 bQTL signals.

Blood cell trait-associated PU.1 motif-altering variants
show regulatory effects in reporter assays
To verify that the nominated PU.1 motif-altering variants are

indeed regulatory variants, we inspected massively parallel

reporter assay (MPRA) study data,60,61 which measured the reg-
ulatory effects of two such variants. rs5827412, a PU.1 motif-

altering short deletion in the LRRC25 locus, was associated

with a lower monocyte percentage (p = 1.33 10�96) and lowered

reporter activity61 (two-sided t test, p = 6.93 10�5). rs3808619, a

PU.1motif-altering SNP at the promoter of ZC2HC1A, was asso-

ciated with a lower lymphocyte count (p = 2.3 3 10�98) and

increased reporter activity61 (two-sided t test, p = 0.006).

LRRC25, also called monocyte and plasmacytoid-activated

protein (MAPA), is a gene necessary for differentiation of granu-

locytes, which share lineages with monocytes.62 At this locus,

we found that the PU.1 bQTL signal showed significant colocal-

ization with monocyte count and percentage, neutrophil count

and percentage, and white blood cell count association sig-

nals8,32 (JLIM p = 5 3 10�5, 4 3 10�5, 1 3 10�5, 1 3 10�5, and

1 3 10�5, respectively, and Coloc PP[colocalization] = 0.99,

0.99, 0.99, 0.99, and 0.98, respectively; Figures 6A and S6A;

Table S4). As the association Z scores show, variants signifi-

cantly associated with lower PU.1 binding are also associated

with a lower monocyte percentage, consistent with
Cell Genomics 3, 100327, July 12, 2023 9



Figure 7. ZC2HC1A locus: PU.1 motif alteration highlights a regulatory variant among those in high LD

(A) The effect of rs3808619 on the PU.1 composite motif.

(B) PU.1 bQTL and lymphocyte count association signal at the ZC2HC1A locus. PU.1 motif-altering variant rs3808619 is marked with a purple diamond and a

dashed line.

(C) PIP of variants in the 95% credible set of lymphocyte count association at the ZC2HC1A locus. rs3808619 is marked as in (B).

(D) ZC2HC1A locus genome tracks of PU.1 ChIP-seq, ATAC-seq, and H3K4me1, histone H3 lysine 4 trimethylation (H3K4me3), and H3K27ac ChIP-seq assayed

in GM12878. rs3808619 is marked as in (B). The highlighted regions correspond to molecular phenotypes with QTL associations in (E).

(E) The effect of rs3808619 dosage on various molecular phenotypes shown in (D). All data points are superimposed over the boxplot.

(legend continued on next page)
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colocalization (Figure 6A). In contrast, the direction of effect is

reversed for neutrophil count and percentage and white blood

cell count (Figure S6A). The corresponding PU.1 binding site

contains a short deletion rs5827412 that lowers the PU.1 motif

score and is associated with reduced PU.1 binding as well as

chromatin accessibility, active histone mark levels, and

LRRC25 expression43,44,58 (Figures 6B and S6B), which is ex-

pected from PU.1’s likely role as an activator.56,57 Consistent

with reduced PU.1 binding, rs5827412 significantly reduced reg-

ulatory activity in a reporter assay61 (two-sided t test, p = 6.9 3

10�5; Figure 6C, left bar); data from another study suggested

concordant direction of effect despite not being statistically sig-

nificant60 (negative binomial regression, p = 0.26; Figure 6C, right

bar). Next, we analyzed available ATAC-seq data from SPI1, the

gene encoding PU.1, knockout pro-B cell lines (RS4;11) to verify

whether PU.1 is likely to be the trans factor for the regulatory

variant.63 We found that, across triplicates for each genotype,

SPI1 knockout resulted in significantly reduced chromatin

accessibility at sites of PU.1 occupancy genome wide64 (chi-

square test, p < 1 3 10�300; Figure S6C). Indeed, the activity of

the regulatory element that contains rs5827412 is likely depen-

dent on PU.1 binding because SPI1 knockout cell lines showed

reduced chromatin accessibility at this region (DESeq2-adjusted

p = 8.733 10�5; Figure 6D). RNA sequencing (RNA-seq) data for

13 blood cell types38 indicate that LRRC25 is specifically ex-

pressed in monocytes at a much higher level than in other blood

cell types and is sharply upregulated as progenitor cells differen-

tiate tomonocytes (Figures 6E and S6D). Consistent with the var-

iant’s strongest effect onmonocyte percentage (p = 1.33 10�96)

and monocyte-specific expression of LRRC25, we found

that rs5827412 is also significantly associated with reduced

LRRC25 expression inmonocytes65 (p = 3.783 10�22; Figure 6F)

and is in a regulatory element that is accessible throughout

monocyte differentiation (Figure 6G). Altogether, our results

provide strong support for rs5827412 reducing LRRC25 gene

expression levels in monocytes and decreasing monocyte

percentage while increasing neutrophil percentage.

In the ZC2HC1A locus, which is primarily associated with

lymphocyte count and percentage32 (p = 1.9 3 10�84 and 6.3 3

10�58, respectively), a PU.1 motif-altering SNP, rs3808619, is

among more than 40 tightly linked (LD r2 z 1) variants

(Figures 7A, 7B, S7A and S7B; Table S4). Currently, ZC2HC1A is

a functionally uncharacterized gene. Based on a UK Biobank

fine-mapping study,66 44 variants comprise the 95% credible set

at this locus, and none has a PIP greater than 0.1 (Figure 7C).

From statistical fine-mapping alone, one would not be able to

pinpoint the causal variant. However, we found that rs3808619 is

the only PU.1 motif-altering variant found within the associated

PU.1 binding site at theZC2HC1A promoter. rs3808619 increases

the strength of a PU.1motif, resulting in a higher-affinityDNAbind-

ing site (Figure 7A). Of multiple variants in this locus that were in
(F) Regulatory effects of rs3808619 and 58 tagging variants in a reporter assay. M

oligo sequence with the AA over that with the reference allele. The inset shows th

from Abell et al.60 and Tewhey et al.61 *: adjusted p < 0.05.

(G) PU.1-dependent reduction in chromatin accessibility levels (CPM) at the regu

counterparts with SPI1 knocked out (SPI1�/�). n = 3 for each condition. *: DESe

See also Figure S7 and Note S3.
high LD with rs3808619 and were tested for reporter activity (59

variants in Abell et al.60 and 30 variants in Tewhey et al.61),

only rs3808619 showed significantly increased reporter activity

(negative binomial regression p = 5.7 3 10�5 and two-sided t

test p = 0.006, respectively) that is concordant in direction with

that of the variant’s associationswith elevated chromatin accessi-

bility, active histone mark levels, and ZC2HC1A expression in

LCLs43,44,58 (Figures 7D–7F). Finally, similar to the previous

example, we detected significantly reduced chromatin accessi-

bility levels at theZC2HC1A promoter inSPI1 knockout cell lines63

(DESeq2-adjusted p = 1.76 3 10�13), supporting the likely role of

PU.1 at this promoter (Figure 7G). rs3808619 is also associated

with multiple sclerosis67 (p = 1.1 3 10�9; Figures S7C and S7D),

suggesting that it plays a multifactorial role in immune-mediated

diseases. Our results suggest that a direct consequence of

rs3808619, which is associated with a lower lymphocyte count,

is likely ZC2HC1A upregulation (Note S3).

DISCUSSION

Our results with PU.1 binding and blood cell trait GWAS data

demonstrate the utility of TF bQTL data in identifying which of

many variants in LD are the likely causal regulatory variants

underlying GWAS trait associations. If a TF bQTL signal shows

significant colocalization with a GWAS signal, and if there is a

motif-altering variant for that TF in the binding site, then that

variant is likely to be the causal variant for both associations.

Incorporating PU.1 bQTLs in our colocalization analysis

conferred two key advantages: (1) identification of trait-associ-

ated regulatory elements, in which PU.1 binding is altered, and

(2) identification of putatively causal PU.1 motif-altering variants.

Together, they highlight a likely transcriptional regulatory

mechanism underlying the trait association. In contrast, alterna-

tive approaches to narrow down variants in accessible

chromatin and search for altered motifs often do not show the

same level of precision. Moreover, eQTL colocalization cannot

assist fine-mapping in this way because there is no prior expec-

tation that a specific noncoding region regulates the associated

gene and that a regulatory variant alters a certain TF binding site

motif. TF bQTLs offer a unique opportunity in this aspect.

For instance, in the ZNF608 locus, pinpointing the putative

causal variant and associated regulatory element would have

been difficult without PU.1 bQTLs. The lead eQTL signal for

ZNF608 in LCLs did not colocalize with the lymphocyte count

association (Figure 5). Such a situation may partially explain

the observation that many significant eQTL signals failed to

colocalize with theGWAS associations using existing colocaliza-

tion methods.23 However, this locus was the only such example

in our study. Nevertheless, this example motivates applying TF

bQTL colocalization to isolate independent eQTL signals and

generating eQTL data in trait-relevant cell types.68 Moreover,
PRA allelic effect corresponds to log2 fold change of regulatory activity of the

e allelic skew estimates with error bars depicting the 95% confidence intervals

latory element surrounding rs3808619 in control pro-B cell lines (SPI1+/+) and

q2 adjusted p < 0.05. The panel is formatted as in Figure 6D.
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applying colocalization methods that allow multiple causal

variants to eQTLs69 would be useful when accurate LD matrices

or individual genotypes are available for both traits, which is

often not the case for GWAS data.

Despite finding several examples of PU.1 motif-altering vari-

ants driving a change in gene expression level, only 10 of 51

such loci showed eQTL signals in LCLs. This observation is not

unlike reports showing that, although GWAS loci are enriched

in eQTL signals,70 only a small subset of GWAS loci shows

colocalization with eQTLs.23,30,71 Nevertheless, most PU.1

motif-altering variants that colocalized with blood cell trait asso-

ciations showed effects on allelic imbalance in PU.1 ChIP-seq,

on chromatin accessibility, and on histone marks (Figure 4).

These variants are likely to be true functional regulatory variants,

so it is mysterious that eQTL effects are not detected in the same

cell type (i.e., LCLs). A possible explanation is that, even though

the variants alter PU.1 binding in LCLs, their effects on gene

expression are manifested in a different cell type, such as pro-

genitor cell types during hematopoiesis, or under particular envi-

ronmental conditions. Uncovering other possible reasons for the

lack of eQTL signals at those loci is crucial for understanding

how the different layers of gene regulation affect complex traits.

A prior study that performed colocalization analysis of neutro-

phils’ PU.1 bQTLs and immune disease GWASs found that a mi-

nority (<50%) of colocalized variants altered PU.1 motifs.25 In

contrast, we found that the majority (87%) of the colocalized

blood cell trait GWAS loci had a variant that altered a PU.1 motif

(Figure 2C). This is an enrichment over just 34%of all LCLs’ PU.1

bQTLs, colocalized or not, harboring a PU.1 motif-altering

variant (Figure 1C). The increased proportion of PU.1 motif-

altering variants present in this study may be due to PU.1’s

central role in blood cell traits36 and highlights the increased like-

lihood that PU.1 binding is mediating the genetic effects on

blood cell traits.

We observed that only a minority of the tested GWAS loci (69

of 367) showed significant colocalization. This is not surprising

becausewe selected candidate loci solely based on themarginal

association with PU.1 binding and blood cell traits23 without

filtering for high LD between the two lead variants23 to ‘‘cast a

wide net’’ for discovery. This observation is a testament to the

importance of performing colocalization analysis to distinguish

loci with a single causal variant for the two phenotypes (here,

PU.1 binding and a particular blood cell trait) from those with

distinct tagging variants responsible for the individual pheno-

types. Furthermore, even though PU.1 bQTLs were enriched

for blood cell trait association (Figure 2A), they explained only

a subset of all associated loci, likely indicating that other TFs

are mediating genetic effects at other associated loci.

We offer guidelines for broad application of colocalization

analysis with TF bQTLs. First, high-quality ChIP-grade anti-

bodies72 or, alternatively, cell lines in which the TF has been

epitope tagged are essential. Second, TFs for bQTL analysis,

as well as the cell type for the ChIP experiments, must be

selected to be relevant to the trait or disease of interest. The

feasibility of our analysis relied on the importance of PU.1, a

known hematopoietic master regulator, and LCLs, a model of

mature B cells, for specific blood cell traits, such as lymphocyte

count and monocyte count. Because generating TF ChIP-seq
12 Cell Genomics 3, 100327, July 12, 2023
data across multiple genotyped samples can be cumbersome,

selecting the trait-relevant TF and cell type is critical. Future

studies will need to validate the regulatory functions of the vari-

ants in the relevant primary cell types.

Future studies could use TF bQTL data in colocalization anal-

ysis to elucidate the ever-increasing number of trait-associated

loci.1 When TFs important for a trait are known, TF bQTLs iden-

tified in the relevant cell type(s) couldmediate a subset of trait as-

sociations, shedding light on putative causal variants as well as

the pathogenic mechanisms. Such colocalization analysis with

TF bQTL data uniquely provides a path to pinpointing causal reg-

ulatory elements and variants and, thus, a smaller set of mecha-

nistic hypotheses to test experimentally to verify the underlying

causes of the disease.

Limitations of the study
The power of statistical tests, including QTL analysis (i.e., linear

regression) and colocalization analysis, depends on the sample

size of the data. In this proof-of-concept study, in which we

analyzed PU.1 ChIP-seq data from 49 samples, we detected

1,497 significant PU.1 bQTLs and 69 robustly colocalized loci

across blood cell traits. However, we anticipate that a larger

sample size could increase the power to detect more loci with

weaker but significant bQTL and colocalization signals. More-

over, colocalization and genetic association are not, in them-

selves, tests of causality. We incorporated colocalization and

PU.1 motif analyses to identify strong candidates for causal

variants and their molecular mechanisms at blood cell trait-asso-

ciated loci. For two examples, we were able to show that MPRA

studies measured the significant regulatory effects of the identi-

fied variants in an episomal context (Figures 6 and 7). However,

whether the associated regulatory effects of these variants

cause downstream changes in blood cell traits needs to be vali-

dated with a genetic perturbation experiment that models blood

cell traits.
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Materials availability
This study did not generate new unique reagents.

Data and code availability
Code and processed data for performing colocalization analysis in this study are available at https://doi.org/10.5281/zenodo.

7837982. Code and processed data for generating the figures are available at https://doi.org/10.5281/zenodo.7837894. All other

data used in the analysis are publicly available and listed in the key resources table.

METHOD DETAILS

PU.1 ChIP-seq data processing
We downloaded PU.1 ChIP-seq fastq files from EMBL-EBI ArrayExpress under accession ‘‘ArrayExpress: E-MTAB-3657’’18 (n = 45)

and ‘‘ArrayExpress: E-MTAB-1884’’26 (n = 4). The list of samples is provided in Table S1.Wemapped the reads to the hg19 reference

genome supplemented with the Epstein-Barr virus (EBV) genome using Bowtie 2.76 In order to eliminate reference allele bias in read
e2 Cell Genomics 3, 100327, July 12, 2023
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mapping, we appliedWASP77 to filter reads thatmapped to a different position when variants were added, and usedGSNAP,78 which

is an SNP-tolerant read alignment method, to remap filtered out reads.

PU.1 ChIP-seq peakswere called usingmodel-based analysis of ChIP-seq version 2 (MACS2).79 For equal representation, we sub-

sampled 5 million reads from each sample and performed peak calling on the aggregate alignment file. To account for the size of the

merged read set, we downloaded 8 available control ChIP-seq samples in GM12878 from ENCODE73 (File IDs: ENCFF032WUR,

ENCFF426WJH, ENCFF508HCX, ENCFF537DAJ, ENCFF812HUT, ENCFF837IOW, ENCFF849LYY, ENCFF892TNJ) for peak calling.

To define 200-bp sequences occupied by PU.1, we took the summits and extended them by 100 bp in each direction. In total, there

were 78,720 peaks.

PU.1 binding quantitative trait loci
First, we quantified the PU.1 binding levels at identified occupancy sites. We counted the number of reads overlapping each 200-bp

peak using featureCounts.80 For each sample, the read counts were normalized for library size using trimmedmean of M-values97 so

that the values are comparable across the samples. Then, the phenotype values were further normalized to follow a standard normal

distribution across the samples, using quantile normalization, similar to the GTEx protocol.51 Finally, in order to eliminate the effect of

variables, such as batch, gender, and ancestry, we used PEER87 to residualize the phenotype values, correcting for batch (i.e., which

publication), sex, and 3 genotype principal components, as well as 10 PEER factors.

Second, we obtained the genotypes of the LCL samples from the 1000 Genomes Project data.39 4 out of 49 samples only had

microarray genotype data from Illumina Omni2.5 chips, and these genotypes were phased and imputed using the European samples

of the 1000 Genomes project phase 3 data39 on the Michigan Imputation Server.84 Genotypes of all samples were converted to

biallelic form and aggregated. Afterward, variants with minor allele frequency less than 5% were removed from the PU.1 binding

quantitative trait loci analysis.

Finally, we tested for genetic associations to PU.1 binding levels using the phenotype matrix and the genotype data. We utilized

QTLtools88 to approximate linear regression efficiently while also correcting for multiple hypotheses tested with permutations and

false discovery rate estimation. For each PU.1 occupancy site, variants within 100 kb were included in the QTL analysis. In the

end, there were 1,497 significant PU.1 bQTLs at FDR <5%.

UK Biobank blood cell trait GWAS summary statistics
We downloaded 28 blood cell trait GWAS summary statistics from UK Biobank32 for the colocalization analysis. The authors per-

formed a linear mixed model-based regression analysis on 452,264 White British individuals using rank-normalized phenotypes.

The 28 blood cell traits are listed in Table S3. One limitation of these summary statistics is that the authors used the Haplotype Refer-

ence Consortium imputation panel, which only included SNPs by design, for imputation98 (Note S2). Thus, short deletions like

rs5827412weremissing in these summary statistics. For Figure 6, we verified that the variant is associated with decreasedmonocyte

percentage and increased neutrophil percentage in summary statistics from another analysis of the UK Biobank data,8 and utilized

these data for visualization.

Fold enrichment of GWAS signal in PU.1 bQTLs
We first generated 250 sets of null variants matched with the significant PU.1 bQTL lead variants for allele frequency, number of

tagging SNPs (LD r2 > 0.5), and distance to the closest transcription start site (TSS), using SNPsnap.89 250 sets of null variants

were successfully generated for 1,292 of the PU.1 bQTL lead variants, so we restricted the downstream analysis within them. Using

the distribution of number of variants tagging (r2 > 0.8) trait-associated lead variants as the background, we computed the fold enrich-

ment of the number of PU.1 bQTLs tagging those variants. The empirical p values are derived for each blood cell trait by counting how

many sets had SNPs tagging (r2 > 0.8) trait-associated variants more than or equal to the number of PU.1 bQTLs tagging them and

dividing by 251. The p values were adjusted using qvalue package in R. For non-blood traits, lead SNPs from GWAS of type 2

diabetes13 and height75 were used.

Position weight matrix and gkm-SVM PU.1 motif models
To initially scan for the position of PU.1 motif sequences within occupancy sites, we used PWMScan.82 With a PU.1 (SPI1) motif po-

sition weight matrix (PWM) selected within the tool (CISBP: M6119_1) we scanned for the motif (p < 10�5) within PU.1 occupancy

sites, which resulted in a total of 30,812 instances. To determine the relative location of PU.1 motifs within the PU.1 occupancy sites,

we subtracted the start or end position of the motif from the center position of the 200-bp PU.1 peak, depending on the strand

(Figure S2A).

Afterward, we trained a PU.1 motif model using gkm-SVM, as a more sophisticated counterpart to PWM. We used the 200-bp se-

quences detected to be PU.1 occupancy sites for positive sequences in the training set. We left out PU.1 occupancy sites with a

variant overlapping PU.1 motifs identified using PWMs (i.e., one of the alleles with log likelihood score >8) from the training set so

that the model effectively captures the motif sequences and excludes potentially causal PU.1 bQTLs. We generated negative se-

quences using the ‘genNullSeqs’ function in the gkmSVM R package. Then, we trained the model using default parameters with
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LS-GKM,83 which is a faster implementation from the developers. Throughout the study, we defined PU.1 motif-altering variants as

those where one of the alleles shows a gkm-SVM score greater than 0 for a 30-bp sequence centered at the variant, and the variant

induces a non-zero change.

Colocalization analysis using JLIM and Coloc
We selected 1,621 PU.1-trait pairs at loci where the significant PU.1 bQTLs also show at least one blood cell trait association at

p < 10�6 to perform colocalization. For JLIM,23,90 we used the default parameters. p values were derived by permuting the PU.1 bind-

ing level matrix. For Coloc,22 we used the prior parameters p1 = 10�4, p2 = 10�4, and p12 = 10�6, which is more conservative than the

default, and ran Coloc on the summary statistics. For both analyses, we considered variants within a 200-kb window around the

GWAS lead variant. We used a significance threshold of p < 0.01172 (FDR <5%) for JLIM and posterior probability of colocalization

(PP(Colocalization)) > 0.5. The FDR cutoff for JLIM was determined by the equation:

FDRðpcutoff Þ =
pcutoffN

#fPJLIM %pcutoffg ;

where pcutoff is the p value cutoff, N is the number of PU.1-trait loci tested, and PJLIM is the JLIM p value.

Chromatin accessibility, histone mark, and expression QTLs in LCLs
ATAC-seq43 (n = 100), histone mark ChIP-seq (n = 15813 and n = 234, respectively), and RNA-seq58 (n = 373) data were downloaded

from European Nucleotide Archive ("ENA: ERP110508"), EMBL-EBI ArrayExpress ("ArrayExpress: E-MTAB-3657" and "ArrayEx-

press: E-GEUV-1"), respectively. ATAC-seq data were only available as bam files, so we used bamtofastq command from bedtools81

to extract reads. We processed ATAC-seq and histone mark ChIP-seq read data similarly to PU.1 ChIP-seq data (i.e., alignment,

duplicate removal, peak calling, quantification, and then probabilistic estimation of expression residuals [PEER]87 normalization).

The processed gene expression matrix derived from RNA-seq was downloaded directly.

We obtained the genotypes of the LCL samples from the 1000Genomes Project data.We imputed 9 out of 100, 9 out of 160, and 15

out of 373 samples, respectively, from available microarray data to the 1000 Genomes Project phase 3 data39 on the Michigan Impu-

tation Server.84 Common variants (MAF >5%) from the merged genotypes and the prepared phenotype matrices were used to test

genetic associations to the corresponding molecular phenotypes with QTLtools.88

We counted the number of significant chromatin accessibility QTLs (caQTLs) and histone QTLs (hQTLs) that are in LD (r2 > 0.8) with

PU.1 motif-altering variants. Since PU.1 binding alteration would affect chromatin that it binds, we considered only those ATAC-seq

and ChIP-seq peaks that overlapped the corresponding PU.1 ChIP-seq peak. LD between the lead variants was determined using

the genotypes of 373 European samples with gene expression data.

To count how many eQTL signals are in LD with colocalized PU.1 motif-altering variants, we searched not only for primary eQTL

signals but also for secondary eQTL signals by conditioning on the primary lead variants. For fine-mapping the ZNF608 locus, as in

Figure 5D, we applied SuSiE54 using default parameters and the genotype matrix of variants within 1 Mb of the gene’s transcriptional

start site. This same fine-mapping approach was used to search for other examples of colocalized PU.1 motif-altering variants with

multiple eQTL signals where only one colocalizes with the GWAS signal.

Searching for accessible variants in GWAS credible sets and their TF motif alterations
We first ascertained 25 PU.1 bQTL colocalized GWAS loci that had a credible set provided in a published blood cell trait GWAS fine-

mapping study.8 Chromatin accessibility annotation was derived from the 100 LCL ATAC-seq samples mentioned above. We

scanned the ascertained credible set variants for those in accessible chromatin using bedtools.81 Then, we searched for which

TFs’ motifs were altered by these variants, using motifbreakR.94 We considered all 2,817 human TF motifs collected in the tool’s

dataset ‘‘motifbreakR_motif’’. The dataset includes multiple versions of some TFs’ motifs because the PWMs were collected from

multiple sources. We used ‘‘filterp = TRUE’’ option with threshold of p = 5 3 10�4. The PWM scoring method was set to ‘‘ic’’. Since

there can be redundant occurrences of motif alterations for the same TF across the PWM databases, we considered the number of

unique TFs. Lastly, to filter the motifs for those corresponding to TFs expressed in LCLs, we considered TFs with median gene

expression TPM >1 across 373 LCL samples.58

QTL analysis for rs74267027 missing in 1000 Genomes phase 3 data
PU1_67321 (chr17:16,171,568-16,171,767) significantly colocalized with blood cell traits – lymphocyte percentage, neutrophil

percentage, neutrophil count, and white blood cell count (JLIM p = 5 3 10�5, 5 3 10�5, 5 3 10�5, and 6 3 10�5, respectively,

and Coloc PP(Colocalization) = 0.85, 0.85, 0.82, and 0.71, respectively). Initially with 1000 Genomes project phase 3 data,39

there was no PU.1 motif-altering variant. However, with closer inspection, a short deletion rs74267027 that alters a PU.1 binding

motif at this site was present in the recently published high-coverage genotype data74 (Table S5). Therefore, we used the ge-

notype information in the high-coverage genotype data to estimate its QTL effect for PU.1 binding, chromatin accessibility and

histone mark levels.
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PU.1 ChIP-seq allelic imbalance effects of PU.1 motif-altering variants
We analyzed PU.1 ChIP-seq data across 49 individuals to estimate the effect of prioritized variants on allele-specific PU.1 binding.

First, we counted the number of PU.1 ChIP-seq reads containing the reference or the alternate allele using createASVCF.sh script

from the robust allele-specific quantification and quality control (RASQUAL) package93. For 44 PU.1 motif-altering SNPs that colo-

calized with blood cell traits association, we identified heterozygous individuals and determined the log2 allelic fold change between

the two haplotypes within each sample. In order to account for samples with no reads containing either allele, we added a pseudo-

count of 0.5 to both the denominator and the numerator. Consider an individual with the genotype ‘‘1|0’’, where 0 and 1 are reference

and alternate alleles, respectively. Haplotype 1 reads would contain the alternate allele, while haplotype 2 reads would contain the

reference allele. Then,

log 2 allelic fold change = log2

�
num readshap1+0:5

num readshap2+0:5

�
:

Next, we followed the allelic imbalance model presented by Liang and colleagues49 to estimate the variant effect on allelic imbal-

ance across individuals. The only difference from that model is the pseudocount of 0.5 that we added to the number of reads from

each haplotype. Individuals with ‘‘1|0’’ and ‘‘0|1’’ genotypes will be encoded as ‘‘1’’ and ‘‘-1’’, respectively. We performed weighted

linear regression where the weights were �
num readshap1+0:5

�
3
�
num readshap2+0:5

�
�
num readshap1+0:5

�
+
�
num readshap2+0:5

�
to estimate the variant’s effect on allelic imbalance. This weighting scheme effectively puts more weight on samples with a higher

number of reads.

Chromatin accessibility and gene expression levels across blood cell types
ATAC-seq and RNA-seq data from multiple blood cell types throughout hematopoiesis were downloaded from GEO series

GSE74912 and GSE74246, respectively.38 We aligned ATAC-seq read data to the hg19 reference genome, and merged data

from each cell type for visualization. The genome tracks in Figure 6G were generated with fold enrichment over average genome

coverage to account for library size differences. We downloaded the count matrix for RNA-seq and converted them to counts per

million for comparison across cell types.

MPRA data analysis
We downloaded MPRA analysis tables from the two studies.60,61 We extracted statistics for rs5827412 and rs3808619, which were

the only two putative causal PU.1 motif-altering variants at colocalized loci with MPRA data. For rs3808619, we also extracted the

statistics for the other 29 and 58 variants tagging rs3808619 from Tewhey et al. and Abell et al., respectively. From Tewhey et al. data,

we referred to the combined LCL analysis statistics, and from Abell et al. data, we referred to the allele effect statistics to measure the

regulatory effects of variants.

Differential accessibility analysis in SPI1 knockout RS4; 11 lines
ATAC-seq data from wild type and SPI1 knockout RS4; 11 cell lines were downloaded from EMBL-EBI ArrayExpress under acces-

sion ‘‘ArrayExpress: E-MTAB-8676’’.63 We aligned the reads using Bowtie276 and removed duplicate alignments using scripts from

WASP.77 Then, we pooled the three replicates per genotype to call accessible regions using MACS279 with q < 0.05 cutoff, and the

two sets of accessible regions were merged using bedtools.81 After counting the number of reads from each region using feature-

Count,80 we tested for differential accessibility using DESeq2.95 PU.1 ChIP-seq and input DNA data from unstimulated RS4; 11

cell lines were downloaded fromGEO series GSE71616.64 After alignment using Bowtie276 and duplicate removal,77 we called peaks

using MACS2.79 Accessible regions were stratified by whether they intersect identified PU.1 occupancy sites. The significance of

observing reduced accessibility in SPI1 knockout lines was tested using a chi square test.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details of the statistical analyses are described in the relevant sections of the method details or in the figure legends.
Cell Genomics 3, 100327, July 12, 2023 e5


	Blood cell traits’ GWAS loci colocalization with variation in PU.1 genomic occupancy prioritizes causal noncoding regulator ...
	Introduction
	Results
	PU.1 motif-altering variants are likely causal for PU.1 bQTL associations
	PU.1 binding sites and PU.1 bQTLs in LCLs are enriched for blood cell trait association
	PU.1 bQTL colocalization with blood cell trait associations
	Most PU.1 bQTLs alter chromatin activity, and some affect gene expression
	bQTL colocalization reveals a putative causal variant that is not the primary eQTL
	Blood cell trait-associated PU.1 motif-altering variants show regulatory effects in reporter assays

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Acknowledgments
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	PU.1 ChIP-seq data processing
	PU.1 binding quantitative trait loci
	UK Biobank blood cell trait GWAS summary statistics
	Fold enrichment of GWAS signal in PU.1 bQTLs
	Position weight matrix and gkm-SVM PU.1 motif models
	Colocalization analysis using JLIM and Coloc
	Chromatin accessibility, histone mark, and expression QTLs in LCLs
	Searching for accessible variants in GWAS credible sets and their TF motif alterations
	QTL analysis for rs74267027 missing in 1000 Genomes phase 3 data
	PU.1 ChIP-seq allelic imbalance effects of PU.1 motif-altering variants
	Chromatin accessibility and gene expression levels across blood cell types
	MPRA data analysis
	Differential accessibility analysis in SPI1 knockout RS4; 11 lines

	Quantification and statistical analysis



