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ABSTRACT

Motivation: Sequence-specific transcription factors (TFs) regulate the

expression of their target genes through interactions with specific

DNA-binding sites in the genome. Data on TF-DNA binding specifici-

ties are essential for understanding how regulatory specificity is

achieved.

Results: Numerous studies have used universal protein-binding

microarray (PBM) technology to determine the in vitro binding specifi-

cities of hundreds of TFs for all possible 8 bp sequences (8mers).

We have developed a Bayesian analysis of variance (ANOVA) model

that decomposes these 8mer data into background noise, TF family-

wise effects and effects due to the particular TF. Adjusting for back-

ground noise improves PBM data quality and concordance with in vivo

TF binding data. Moreover, our model provides simultaneous identifi-

cation of TF subclasses and their shared sequence preferences, and

also of 8mers bound preferentially by individual members of TF sub-

classes. Such results may aid in deciphering cis-regulatory codes and

determinants of protein–DNA binding specificity.

Availability and implementation: Source code, compiled code and R

and Python scripts are available from http://thebrain.bwh.harvard.edu/

hierarchicalANOVA.
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1 INTRODUCTION

Transcription factors (TFs) play a key role in the regulation of

gene expression by activating or repressing transcription of their
target genes. Regulatory specificity is achieved primarily by the

recognition of specific DNA binding sites in the genome by

sequence-specific TFs. Data on TF-DNA binding specificity

are important for understanding how transcriptional regulation

is encoded in cis-regulatory sequences in the genome.
TFs can be classified according to the structural class of their

DNA-binding domains (Luscombe et al., 2000). TFs of the same

structural class adopt the same fold in their DNA-binding

domain and dock with their DNA binding sites in a similar

manner. Because of these structural similarities, combined with

sequence similarities because of the origin of TF families from
ancient gene duplications and subsequent mutations, members

of the same DBD class often, but not always, have similar DNA-

binding sequence preferences (Badis et al., 2009). A DBD class
can be further divided into subclasses, with more closely related

proteins exhibiting more similar DNA-binding preferences.

Understanding how highly similar members of a TF family
attain both redundant and divergent regulatory functions

remains a significant challenge (Grove et al., 2009).
Accurate and comprehensive data on DNA-binding sequence

specificities are essential for investigations of regulatory targeting
by TFs, including the identification of the molecular determinants

of TF-DNA binding specificity. A variety of high-throughput

technologies have been developed for determining TF-DNAbind-
ing specificity (reviewed in Bulyk and Walhout, 2012). Methods

that provide data on in vivo TF occupancies in the genome, such

as chromatin immunoprecipitation coupled with either DNA
microarrays (ChIP-chip) or high-throughput sequencing (ChIP-

Seq), provide data on both direct and indirect DNA binding by
TFs (Gordân et al., 2009), which can vary across cellular or en-

vironmental conditions (Harbison et al., 2004). In contrast,

approaches that determine DNA-binding specificities in vitro pro-
vide data on direct TF–DNA interactions, without the confound-

ing effects of in vivo protein cofactors (Gordân et al., 2009).
Protein-binding microarray (PBM) technology is an in vitro

approach for characterizing the DNA-binding specificities of

proteins, by assaying the binding of a protein to a library of
double-stranded DNA sequences immobilized on a DNA micro-

array (Bulyk et al., 2001). Universal PBMs contain synthetic
DNA sequences designed to represent all possible k-mers, with

commonly used array designs encompassing all possible 10 bp

DNA sequences (k¼ 10) (Berger et al., 2006). Universal PBMs
have been used in numerous recent studies to determine the

DNA-binding specificities of hundreds of TFs from a wide

range of organisms (Busser et al., 2012; Campbell et al., 2010;
Grove et al., 2009), with major efforts on TFs encoded in the

genomes of the yeast Saccharomyces cerevisiae (Badis et al., 2008;

Gordân et al., 2011; Zhu et al., 2009) and mouse (Badis et al.,
2009; Berger et al., 2008; Wei et al., 2010).
Universal PBMs contain 60 bp DNA probes, each of which

contains multiple 10mers embedded within variable flanking

sequence. For statistical robustness, binding preference scores*To whom correspondence should be addressed.
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are calculated for all 8mers, each of which is represented on at
least 16 or 32 spots, for palindromic and non-palindromic 8mers,
respectively, on the array. Analysis of universal PBM data using

the Universal PBM Analysis Suite, including the Seed-and-
Wobble algorithm (Berger and Bulyk, 2009; Berger et al.,
2006), which was developed together with the universal PBM

technology, involves background subtraction, various normaliza-
tions of the data and calculation of various binding scores for
each 8mer, including the median fluorescence signal intensity

over all probes that contain a particular 8mer and a rank-
based PBM enrichment (E) score, ranging from �0.5 (worst)
to þ0.5 (best). The 8mer data can be used to derive a DNA-

binding specificity motif, or position weight matrix (PWM)
(Berger and Bulyk, 2009; Berger et al., 2006).
Analyses of large collections of universal PBM data have iden-

tified previously unknown diversity in the DNA-binding

sequences recognized by TFs (Badis et al., 2009; Berger et al.,
2008; Gordân et al., 2011). Hierarchical clustering of TFs accord-
ing to their similarity in 8mer E-scores has permitted more precise

identification of TF subclasses according to their DNA-binding
specificities (Berger et al., 2008; Gordân et al., 2011; Wei et al.,
2010). In addition, examination of k-mer-binding preferences

within a TF family (here, defined as a group of closely related
TFs belong to the same DBD structural class or the same subclass
within aDBDclass) has revealed sets of k-mers bound in common

across the family (‘TF-common’ k-mers) and also sets of k-mers
preferred by an individual member(s) of a TF family. To date,
identification of such ‘TF-preferred’ k-mers has been performed

in an ad hoc fashion, in manual investigations of individual sets of
TFs that used various semi-arbitrary thresholds (Busser et al.,
2012) combined with visual inspection (Berger et al., 2008;

Gordân et al., 2011). Such TF-preferred k-mers may contribute
to the distinct regulatory functions that distinguish members of a
TF family.

Although hierarchical clustering has been used successfully for
functional classification of gene expression profiling microarray
experiments (Eisen et al., 1998) and for identification of TF

subclasses based on PBM experiments (Berger et al., 2008;
Gordân et al., 2011; Wei et al., 2010), the inclusion of unneces-
sary features that are irrelevant to cluster determination may

degrade the results. This is especially the case for PBM experi-
ments, where only a small fraction of k-mers measured by
experiments are bound specifically by the profiled TF.

Biclustering is a simultaneous similarity-based clustering
approach that is able to detect subsets of features that exhibit
consistent patterns over subsets of experiments (Cheng and

Church, 2000; Gusenleitner et al., 2012); however, it does not
directly provide a systematic classification of TF subclasses.
Model-based methods for identifying and removing batch effects

and other sources of variation have been developed for meta-
analysis of high-throughput data, including microarray-based
gene expression profiling experiments (Johnson et al., 2007;

Leek and Storey, 2007, 2008; Leek et al., 2010, 2012). Direct
application of such methods potentially could separate system-
atic background noise from identification of k-mers preferred by

different TFs from PBM data.
Here, we present a Bayesian hierarchical analysis of variance

(ANOVA) approach for modeling PBM k-mer data (here,

8mers). Our method identifies 8mers that score artifactually

highly (‘sticky’ 8mers) for unknown reasons. Our approach for

subsequently adjusting for these systematic biases improves over-

all PBM data quality and improves concordance with ChIP-chip

data. Our modeling results in systematic identification of TF

subclasses, simultaneously with their shared DNA-binding pref-

erences, as well as the sequence preferences that distinguish them.

Our TF subclassification results are consistent with classifica-

tions based on TF DBD sequence similarity. Our method also

permits automated identification of TF-preferred k-mers within

TF subclasses. Improved identification of TF-preferred k-mers

will aid in studies of potential differences in the targeting of dif-

ferent genomic sites by paralogous TFs, and thus potentially how

they may exert different regulatory functions. We anticipate that

such modeling will aid in identification of genomic cis-regulatory

codes (i.e. cis-regulatory sequence features that confer particular

gene expression patterns) and will improve the quality of datasets

for identification of the molecular determinants of TF–DNA

sequence specificity.

2 METHODS

2.1 Datasets

2.1.1 PBM datasets We downloaded universal PBM k-mer
data and DBD structural class data from the UniPROBE data-

base (Robasky and Bulyk, 2011), which hosts data generated by

universal PBM technology on the in vitro DNA-binding specifi-

cities of proteins. The relative binding preference of a TF for

each k-mer (here, k¼ 8) in universal PBMs is quantified by the

PBM enrichment score (E-score), which is a modified form of the

Wilcoxon–Mann–Whitney statistic (Berger et al., 2006). We refer

to this as the observed E-score. We consider observed E-scores

40.35 as corresponding, in general, to sequence-specific DNA

binding of the TF. In this study, we included 349 TFs from 19

DBD structural classes (e.g. homeodomain), with the criterion

that there are at least three TFs per DBD class. Two of the

downloaded PBM datasets are of particular interest in this

study. One is a mouse TF dataset with 87 TFs from 12 DBD

classes (filtered according to the above criterion from 104 TFs

from 22 structural classes) previously described by Badis et al.

(2009), in which PBM experiments were performed for each TF

on two different versions of ‘all 10mer’ universal arrays, referred

to as ‘version 1’ and ‘version 2’ [Agilent Technologies, Inc.;

AMADID #015681 (Berger et al., 2008) and #016060 (Zhu

et al., 2009), respectively], which were based on two different

‘all 10mer’ de Bruijn sequences. The other is a yeast TF dataset

with 79 TFs from 10 DBD classes (filtered according to the

aforementioned criterion from 89 TFs from 18 structural classes)

in Zhu et al. (2009) for which ChIP-chip data (Section 2.1.2) are

publicly available in Harbison et al. (2004) for 57 of these 79

TFs. We also included eight negative control experiments, cor-

responding to duplicate PBM experiments on each of array

design versions 1 and 2, for glutathione S-transferase in binding

buffer and, separately, for a mock in vitro transcription and

translation reaction (Badis et al., 2009).

2.1.2 ChIP-chip datasets We downloaded yeast ChIP-chip data
from Harbison et al. (2004) for 352 ChIP-chip experiments for

207 TFs under various culture conditions (Harbison et al., 2004).
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We use the notation TF_cond to refer to the ChIP-chip experi-

ment for transcription factor TF under environmental condition

cond. For each ChIP-chip dataset, we defined the ‘bound’ inter-

genic regions to be those with ChIP-chip P50.001 and the ‘un-

bound’ intergenic regions to be those with ChIP-chip P40.5, as

reported by Harbison et al. For 57 of these 207 TFs, PBM data

are available in UniPROBE. We further restricted our analysis to

ChIP experiments for which the ChIP ‘bound’ regions have been

explained as being due to direct DNA binding by the profiled TF

(Gordân et al., 2009); this requirement resulted in a final collec-

tion of 75 ChIP-chip datasets for 46 TFs.

2.2 Bayesian ANOVA decomposition of PBM k-mer data

2.2.1 Bayesian ANOVA model for identifying ‘TF-common’ and
‘TF-preferred’ k-mers Given family membership (e.g. DBD

structural class) of TFs, the DNA-binding specificity scores

from PBM experiments can be decomposed into components

attributable to at least three sources of variation: systematic

biases across all PBM experiments, family-wise-binding prefer-

ences shared by members of the same TF family (i.e.

‘TF-common’ k-mers) (Berger et al., 2008; Busser et al., 2012)

and k-mer-binding preferences specific to individual member(s)

of a given TF family (i.e. ‘TF-preferred’ k-mers) (Berger et al.,

2008; Busser et al., 2012). For PBM datasets from several diverse

DBD classes, we used a Bayesian ANOVA model with hidden

indicators to decompose PBM E-scores into different compo-

nents and to infer the corresponding TF-common and

TF-preferred k-mers systematically.
Specifically, for a TF family f and a k-mer j, we use Pf, j ¼ 1

(Pf, j ¼ �1) to indicate that the k-mer is preferred (disfavored) by

members of that TF family, and Pf, j ¼ 0 if members of the

family show no consistent preferred or disfavored binding for

the k-mer. For a TF i and a k-mer j, we use Qi, j ¼ 1

(Qi, j ¼ �1) to indicate that the k-mer is preferred (disfavored)

by the TF, and Qi, j ¼ 0 otherwise. Given family membership

Fi ¼ f and the standardized E-score (standardized to have

sample mean 0 and sample variance 1) Yi, j of TF i and k-mer

j, we assume the ANOVA decomposition:

Yi, j ¼ �j þ !f, j þ �i, j þ "i, j ð1Þ

where idiosyncratic noise "i, j � N 0, �2
� �

, systematic background

noise �j � N 0, �2=�1
� �

,

family-wise effect !f, j �

N !þf , �
2=�2

� �
, if Pf, j ¼ 1,

N !�f , �
2=�2

� �
, if Pf, j ¼ �1,

N 0, �2=�2
� �

, if Pf, j ¼ 0,

8>>><
>>>:

and TF-specific effect �i, j ¼

�þi , if Qi, j ¼ 1,

��i , if Qi, j ¼ �1,

0, if Qi, j ¼ 0:

8><
>:

We assign inverse �2 priors on �2, �1 and �2, truncated normal

priors on !�f and ��i and independent multinomial priors on

indicators Ps and Qs (see Supplementary Fig. S2 for sensitivity

analysis on the choices of priors). We used a Markov Chain

Monte Carlo (MCMC) algorithm (Geman and Geman, 1984;

Metropolis et al., 1953) to obtain posterior distribution of par-

ameters and hidden indicators according to our ANOVA model

[Equation (1)] (see SupplementaryMethods for the MCMC algo-

rithm and Supplementary Fig. S1 for diagnostics of its conver-

gence). In the following study, we are especially interested in the

posterior distribution of background noise �j, and indicators of

family-wise and TF-specific effects.

2.2.2 Correcting k-mer data for systematic biases Let E �j Yj
� �

be

the posterior mean of �j calculated from Equation (1), and let yj
be the standardized E-score of k-mer j from a PBM experiment.

To remove systematic biases, we subtract the posterior mean of

the background noise from the corresponding standardized E-

score, i.e. y0j ¼ yj � E �j Yj
� �

. Then, an E-score corrected for sys-

tematic biases can be obtained by transforming y0j back to the

original scale. We refer to this as the corrected E-score.

2.2.3 Evaluating the statistical significance of TF-preferred
k-mers For a pair of TFs and a given k-mer, we evaluate the
statistical significance of its being TF-preferred by the intersec-

tion-union test (Berger and Hsu, 1996) with the null hypothesis

that either none of the TFs exhibits preferred binding to the

k-mer, or the pair have no difference in their binding preferences

for the k-mer (see Supplementary Methods for details). We

report all TF-preferred k-mers at an adjusted P50.05 by

Benjamini–Hochberg correction (Benjamini and Hochberg,

1995) in an output text file and automatically create scatterplots

showing the top n (user-specified setting) TF-preferred k-mers.

2.3 Bayesian partition model for identifying TF subclasses

2.3.1 Bayesian hierarchical partition model The Bayesian

ANOVA model introduced in the previous section assumes

that TFs have been classified into families. In practice, DBD

structural class can be used to define TF family memberships.

However, members of the same DBD class do not always exhibit

similar DNA-binding preferences. A collection of PBM datasets

for TFs from the same DBD class provides a unique perspective

to refine the classification of TFs into subclasses according

to their DNA-binding sequence preferences. Here, we present

a Bayesian model that simultaneously partitions TFs into

subclasses that have similar DNA-binding profiles, and clusters

k-mer DNA sequences into groups that are preferred by one

or more TF subclasses.

Specifically, let Yi, j be the standardized E-score of TF

i 2 1, 2, . . . ,NTf g and k-mer j 2 1, 2, . . . ,NKf g, where NT is the

number of PBM datasets for TFs from the same DBD class and

NK is the total number of k-mers after collapsing forward and

reverse complements (NK ¼ 32, 896 for k¼ 8). Suppose Ci is the

unknown subclass of TF i and Gj is the unknown group mem-

bership of k-mer j. For each group g of the k-mers

(g ¼ 1, 2, . . . ,NG), Ig ¼ 1 if the group is preferred by one or

more TF subclasses and Ig ¼ 0 otherwise. Then, given Ci ¼ c

and Gj ¼ g, we assume:

Yi, j Gj ¼ g
�� � N �i, g, �

2
� �

and �i, g Ci ¼ cj � N �c, g, �
2=	1

� �
ð2Þ

where �c, g follows N 0, �2=	2
� �

if Ig ¼ 1 and �c, g ¼ 0 if Ig ¼ 0.

We further assume that �2 follows an inverse �2 prior

Inv� �2 
0, �
2
0

� �
with 
0 ¼ �

2
0 ¼ 1. As the total number of
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subclasses in a DBD class is unknown, we use a Dirichlet process
prior on the subclass assignments C ¼ Ci i ¼ 1, 2, . . . ,NTjf g. The
prior probability of group assignment G ¼ Gj j ¼ 1, 2, . . . ,NK

��� �
is given by � Gj ¼ g

� �
¼ 1=NG, where g ¼ 1, 2, . . . ,NG. In this

article, we show the results using 	1 ¼ 	2 ¼ 1 and NG¼ 100 (see
Supplementary Fig. S3c for the sensitivity analysis on the choice
of NG and hyper-parameters 	1, 	2, 
0 and �20).
For each group g of the k-mers, given I ¼ Ig g ¼

���
1, 2, . . . ,NG:g, C and hyper-parameters, we can integrate
out (i.e. marginalize over) intermediate parameters in our hier-

archical model [Equation (2)] to get an explicit expression of
the probability P Yg Ig

�� ,C
� �

, where Yg ¼ yi, j Gj ¼ g, i ¼
���

1, 2, . . . ,NTg is the collection of observed E-scores for k-mers

in the group (Supplementary Methods). Combining with prior
distributions of � Cð Þ, � Gð Þ and � Ið Þ, we obtain the posterior
distribution of C, G and I given observed E-scores Y,

P C,G, I Yjð Þ / � Cð Þ� Gð Þ� Ið Þ
YNG

g¼1

P Yg Ig
�� ,C

� �
; ð3Þ

We can draw from the posterior distribution [Equation (3)] itera-
tively using a collapsed Gibbs sampler (Liu, 1994) (see
Supplementary Methods and Supplementary Fig. S3a and

b for convergence diagnostics).

2.3.2 Motif model for aligning k-mer DNA sequences We build

a PWM to characterize the DNA-binding specificity of a group
of k-mers (e.g. TF-common k-mers for a TF family). An element
of PWM Q ¼ qm, n

� �
is defined as the probability of observing a

nucleotide n 2 A,C,G,Tf g at position m 2 1, 2, . . . ,Wf g, where
W is the pre-determined length of the PWM (here, W ¼ 10 for
8mer PBM data). Let Sj ¼ sj, l l ¼ 1, 2, . . . , kj

� �
be the DNA se-

quence of k-mer j 2 1, 2, . . . ,Ng

� �
in group g, where Ng is the

number of k-mers in group g, and aj is the alignment position of
k-mer j within the PWM, where aj 2 f�4, � 3, . . . ,W� kþ 4g.
Here, we allow the k-mer sequence not to be fully ‘contained’

within a PWM but instead require that the alignments have an
overlap of at least 4 nt. For example, aj ¼ �2 means that the
third position of k-mer j is aligned with the start (i.e. 50-end)

of the PWM. The background probability of nucleotide
n 2 A,C,G,Tf g, rn, is assumed to be 0.25. The probability of
sequence being generated by the motif model is then given by:

P Sj aj,Q
��� �

¼
Yk
l¼1

rsj, lI ajþl�0f g þ qajþl, sj, lI 1�ajþl�Wf g þ rsj, l I ajþl4Wf g

� �
;

ð4Þ

where IA is an indicator function of event A. By assigning
appropriate priors (Supplementary Methods), we can use a
Gibbs sampling strategy (Geman and Geman, 1984; Lawrence

et al., 1993; Liu, 2008; McCue et al., 2001) to iteratively update
aj
� �

and Q based on the model shown in Equation (4). Finally,
we construct a PWM based on the posterior modes of aj

� �
and

generate a corresponding motif sequence logo (Schneider and

Stephens, 1990).

3 RESULTS

We have developed a Bayesian ANOVA model to decompose
8mer PBM E-scores into background noise (i.e. artifactually
high-scoring background k-mers), family-wise effects and

experiment-specific effects, given a collection of PBMexperiments

and TF family classification based on DBD structural class.

Below we start with the identification of artifactually high-scoring

background k-mers, then describe the identification of TF sub-

classes based on the k-mer data and conclude with identification

of experiment-specific effects in analyses aimed at improved iden-

tification of sets of k-mers bound preferentially by one TF as

compared with a closely related TF (i.e. ‘TF-preferred’ k-mers).

3.1 Identification of artifactually high-scoring (‘sticky’)

k-mers

From the ANOVA model [Equation (1)] described in Section

2.2.1, we can infer k-mer background noise based on their pos-

terior means. Background noise constitutes a non-negligible

component of E-scores with a standard deviation of 0.063,

as compared with a standard deviation of 0.148 for E-scores

(Fig. 1a). The posterior means of the variance and scale param-

eters �2, �1 and �2 are 0.647, 1.985 and 1.505, respectively.

Examination of the sequences of the top 50 artifactually high-

scoring k-mers, ranked according to their background noise

and their E-scores across 357 experiments in our PBM datasets,

indicates that AT-rich k-mers have artifactually high E-scores in

nearly all PBM datasets for a diverse range of TF DBD classes

(Fig. 1c); the most ‘sticky’ k-mer across a wide range of TF DBD

classes is AAAAAAAA (Fig. 1b).

To compare the background noise of k-mers on different array

designs, we calculated the k-mer background noise from the

mouse TF PBM data from Badis et al. (2009), in which two dif-

ferent de Bruijn sequence array designs were used in PBM experi-

ments for each TF; these are designated as array design versions 1

and 2 [AMADID #015681 (Berger et al., 2008) and #016060 (Zhu

et al., 2009), respectively]. Comparison of the ‘sticky’ k-mers (i.e.

those with background noise larger than one standard deviation

of the original E-scores, which is 0.148 for version 1 and 0.153 for

version 2) from this dataset indicates that (Fig. 1d) the two dif-

ferent array versions exhibit different numbers of ‘sticky’ k-mers,

and that array design version 2 is noisier (i.e. has a larger number

of ‘sticky’ k-mers) than version 1 (see Supplementary Figs S4 and

S5 for additional comparisons of these two array versions). The

two different array designs exhibited some differences in k-mer

background noise (Pearson correlation coefficient r¼ 0.65;

Supplementary Fig. S5a) as compared with independent experi-

ments using the same array design (Pearson correlation coefficient

r¼ 0.88; Supplementary Fig. S5b), for example, although

AAAAAAAA is artifactually high scoring in both version 1

and version 2 datasets, CCCCGCCC is found to be ‘sticky’

only in version 1 datasets (Supplementary Fig. S4a). The top 20

artifactually highest scoring k-mers, together with their noise

levels, from each of these two array versions are listed in

Supplementary Figure S4c. To further investigate this effect, we

compared the results from the Badis et al. mouse TF PBM data

with the set of ‘sticky’ k-mers that we identified in analysis of a

separate, yeast TF PBM dataset (Zhu et al., 2009), both of which

used version 1 arrays. We observed significant overlap in the

‘sticky’ k-mers identified in these different datasets (Fig. 1d);

differences in these sets of ‘sticky’ k-mers could be due to differ-

ences in protein sample preparation, experimental variation and

differences in the representation of different DBD classes among
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the TFs that were tested in PBMs in the Badis et al. (2009) versus

Zhu et al. (2009) studies.

3.2 Correction for artifactually high-scoring background

for ‘sticky’ k-mers

As described in Section 2.2.2, we correct the E-score of each

k-mer by subtracting its background noise from the original

(observed) E-score. For example, for PBM data for the yeast
TF Rpn4 published in Zhu et al. (2009), the observed E-scores

and their corresponding background noise are highly correlated
(Pearson correlation coefficient r¼ 0.71; Fig. 2a); subtracting the

background noise from the E-scores reduced this correlation to
0.26. Comparison of the motif logo generated from the 68k-mers

with observed E-scores40.35 with the logo generated from the

same number of top scoring k-mers after correction for back-
ground noise shows that the quality of the motif greatly improves

by correcting the E-scores for systematic biases (Fig. 2b).

3.3 Evaluation of corrected k-mer E-scores as compared

with ChIP-chip data

We used in vivo ChIP-chip–binding data to further evaluate the

effect of background noise correction of PBM E-scores.

Specifically, we first applied background noise correction to

the yeast PBM data from Zhu et al. (2009), and then assessed

whether this resulted in an improvement in scoring of regions

called as ‘bound’ in the Harbison et al. (2004) ChIP-chip data for

the same TF. Briefly, for a given TF and a given intergenic se-

quence, we first calculated an occupancy score by summing PBM

median signal intensities for each k-mer with an observed E-score

40.35 (Zhu et al., 2009). We used these PBM-based occupancy

scores to rank the intergenic sequences within the ChIP-chip

‘bound’ and ‘unbound’ regions for each ChIP-chip dataset,

and then calculated the corresponding area under the receiver

operating characteristic curve (AUC statistic). We repeated this

same AUC calculation using the corrected E-scores. For com-

parison, we rank k-mers by their corrected E-scores and score the

intergenic sequences using the same number of top-ranked k-

mers as in the calculation with the original (observed) E-scores.

In practice, the background correction of a new PBM experiment

is based on the estimation from previous experiments; to accur-

ately evaluate this process, we used an independent mouse

TF PBM dataset (with the same array design) from Badis

et al. (2009) to calculate k-mer background noise.

Overall, use of the corrected E-scores resulted in a statistically

significant increase (P¼ 2.8� 10�4 by Student’s t-test) in AUC

Fig. 1. Artifactually high-scoring background k-mers. (a) Comparison of the distribution of k-mer background noise and the original (observed)

E-scores. (b) Box plot of E-scores for the most ‘sticky’ k-mer (AAAAAAAA, collapsed with reverse complement TTTTTTTT) across all the available

PBM datasets, including a set of negative control PBM experiments (Badis et al., 2009). (c) Sequence motif logo generated from the top 50 artifactually

high-scoring k-mers and their E-scores across our PBM datasets. The multi-colored strip above the heatmap indicates each TF’s DBD class (from left

to right): AP-2, AP2, ETS, Fork_head, GATA, HLH, HMG_box, HSF_DNA-bind, HTH, Homeodomain, IRF, MADS, Myb, RFX, SAND,

ZnF_C4, bHLH, bZIP, Zf-C2H2 and negative control experiments. (d) (Top) Venn diagram comparing the number of ‘sticky’ k-mers with back-

ground noise larger than one standard deviation from two different ‘all 10mer’ de Bruijn sequence array designs; (Bottom) Venn diagram comparing

‘sticky’ k-mers identified from (Badis et al., 2009) and (Zhu et al., 2009), both of which used array design version 1
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statistics (Fig. 3). Some ChIP-chip datasets exhibited a sharp

increase in AUC by using the corrected E-scores, for example,

the AUC for Rpn4 increased from 0.573 to 0.749 for ChIP-chip

data for a highly hyperoxic condition (RPN4_H2O2Hi) and

from 0.680 to 0.910 for ChIP-chip data for a mildly hyperoxic

condition (RPN4_H2O2Lo). Moreover, PBM datasets with rela-

tively few high-scoring k-mers and low AUC values in such

ChIP-chip analysis showed a uniform increase in AUC with

the use of corrected E-scores; this observation is consistent

with the hypothesis that the effect of k-mer background noise

is more prominent in PBM datasets for TFs with relatively

weaker binding signal. Any decreases in AUC value from

using corrected E-scores were minor (56%), and in one extreme

case—Yap6, for which use of corrected E-scores resulted in a

decrease of 6.0% from the original AUC value—the difference

seems to be because of AT-rich ‘sticky’ k-mers that are bound

sequence specifically by certain TFs, such as Sum1, which seems

to provide for indirect binding of the ChIP-profiled TF (i.e.

Yap6) to DNA (Gordân et al., 2009).

3.4 Identification of ‘TF-common’ k-mers

By using the ANOVA decomposition model, we are able to iden-

tify groups of k-mers bound in common across the family

(‘TF-common’ k-mers). For example, k-mers with high posterior

probabilities for being TF-common have uniformly high E-scores

for TFs in the ETS DBD class and relatively low E-scores for

TFs in all the other DBD classes (Fig. 4a). The PWM constructed

from these k-mers indicates a shared binding specificity for the

ETS DBD class (Fig. 4a, top). Characterization of TF-common

k-mers for other DBD classes (GATA, HLH, HMG-box

and homeodomains) are given in Supplementary Figures

S7–S10. Posterior distribution of family-wise effects and numbers

of TF-common k-mers for all the DBD classes are given in

Supplementary Figure S6.

3.5 Identification of TF subclasses based on similarity of

PBM k-mer data

Our Bayesian hierarchical partition model allows for categoriza-
tion of TF subclasses based on DNA-binding preferences, which
can simultaneously determine common binding sequences for

each subclass. Previously, Berger et al. discovered separate
DNA-binding specificity subgroups by considering the overlap
among top 100 highest-affinity 8mers for homeodomains (Berger

et al., 2008). Distinct binding patterns were also identified by
manually examining 8mers with E-scores greater than a thresh-
old score of 0.45. Our model-based analysis of homeodomains

not only shows subclassification that is consistent with the results
of Berger et al. (2008) but also systematically characterizes the
common binding sequences for different subclasses of homeodo-

mains (Supplementary Fig. S11).
We further applied our model to determine subclasses and

their DNA-binding specificities in the ETS DBD class.
Classification of 22 mouse ETS factors by hierarchical clustering

(Fig. 4c) over two groups of 8mers identified in our analysis as
being preferred by ETS subclasses is in general consistent
with the classification obtained by aligning ETS-domain peptide

sequences using the ClustalW algorithm (Fig. 4d), and it is
broadly similar to the results obtained in Wei et al. (2010), in
which the similarity between DNA-binding specificity motifs

was obtained using the minimum Kullback-Leibler divergence
between the multinomial distributions defined by the motifs.
Notably, motifs generated according to subclass-preferred

8mers (Fig. 4c) are different from the motif generated from the
TF-common k-mers (Fig. 4a). A subclass of the ETS factors with
similar ETS-domain peptide sequences according to ClustalW

shows a specific binding preference to a consensus sequence
ACCGGAT (marked by a red box in Fig. 4c). Interestingly,
members of this subclass can be distinguished further according
to their binding preferences for the consensus sequence CCGGT.

Differential binding preference by ETS factors for the core
sequence GGAT has been observed previously (Wei et al.,
2010), where its molecular basis was explored. By automatically

identifying 8mers that have the most distinct binding patterns,

Fig. 2. Correction for artifactually high-scoring background k-mers.

(a) Scatterplot of k-mer observed E-scores and background noise for

yeast TF Rpn4. The blue dotted line indicates the original threshold of

E� 0.35. Red points indicate specifically bound 8mers after background

correction. The correlation between E-scores and background noise

diminishes from 0.71 to 0.26 after correction. (b) Improvement in motif

quality for Rpn4 after correction for k-mer background noise

Fig. 3. Comparison of corrected PBM k-mer data with ChIP-chip experi-

ments. The relative change in AUC values by using corrected E-scores

is plotted against the original AUC values before background noise cor-

rection. ChIP-chip datasets for which the use of corrected E-scores

resulted in at least 10% change in AUC value are indicated with

TF_condition names
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our model is able to characterize the binding specificities among
members of the ETS DBD class in more detail.

3.6 Identification of ‘TF-preferred’ k-mers

Highly similar members of a TF family can show different DNA
binding sequence preferences. For example, the homeodomains

Lhx4 and Lhx2 both bind most preferentially to the canonical
sequence TAATTA, but they differ in their preferences for other
k-mers (Berger et al., 2008). In Figure 5a, we show the DNA-

binding specificity motifs for 8mers that are identified as TF-
preferred by Lhx2 but not Lhx4, and for those identified

as TF-preferred by Lhx4 but not Lhx2, according to our
ANOVA model described in Section 2.2.1. At the same time,
we also applied the procedure described in Section 2.2.3 to

search for TF-preferred k-mers based on their statistical signifi-
cance calculated by an intersection-union test. To have a suffi-

ciently large sample size, we focused on TF-preferred 6mers in
this study, and our tests are based on observed E-scores of 8mers
containing a given 6mer. Analyses based on observed E-scores

yielded nearly identical results as those based on corrected E-
scores, as the differences between E-scores for a pair of TFs

for the same k-mer are invariant to correction. The top three
TF-preferred 6mers (each at P51.0� 10�7) found by this ana-
lysis in a pairwise comparison of Lhx2 and Lhx4 are apparent as

off-diagonal points in a scatterplot of 8mer E-scores (Fig. 5b).

Fig. 4. Categorization of TF subclasses for the ETS DBD class. (a) TF-common k-mers for the ETS DBD class and their corresponding E-scores

across our PBM datasets. The multi-colored strip above the heatmap is as in Figure 1c. (b) Pairwise posterior probabilities for clustering 22 mouse ETS

factors based on the partition model described in Section 2.3.1. (c) Hierarchical clustering of 22 mouse ETS factors based on two groups of 8mers

identified as subclass-preferred. (d) Classification of members of the ETS DBD class by aligning ETS-domain peptide sequences using the ClustalW

algorithm. TFs marked with red boxes in (b), (c) and (d) show a strong preference for the core sequence GGAT relative to other members of the

ETS DBD class

Fig. 5. Model-based identification of TF-preferred k-mers. (a) Scatterplot

of 8mer E-scores comparing Lhx2 and Lhx4. The 8mers containing each

of the top three most significantly TF-preferred 6mers from a direct com-

parison of Lhx2 and Lhx4 are highlighted in colors, revealing clear sys-

tematic differences in the binding by Lhx2 or Lhx4 to these sequences.

(b) Sequence motif logos of TF-preferred 8mers for Lhx2 (left) and Lhx4

(right). Sequence motifs were generated as described in Section 2.3.2 using

8mers (with equal weights) that are identified by our ANOVA model as

TF-preferred by one TF but not the other
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Of note, the TF-preferred 6mers identified by our model-based
approach are consistent with TF-preferred 6mers identified by
the intersection-union test. All four 6mers (TAATGA and

TAACGA for Lhx2 and TAATCA and TAATCT for Lhx4)
identified in (Berger et al., 2008) by a primarily manual approach
are also significant in our new, automated analysis

(Supplementary Fig. S12). In addition, our automated analysis
finds additional TF-preferred k-mers, for example, it finds
TAATGG as a statistically significant TF-preferred 6mer

(P¼ 6.9� 10�17) for Lhx2 and CAATCA as a statistically sig-
nificant 6mer (P¼ 1.2� 10�23) for Lhx4, in a pairwise compari-
son of those two TFs. Note that our analysis identifies CAATCA

as preferred by Lhx4 in comparison with both Lhx2 and also
with Lhx3 (Supplementary Fig. S13).

4 DISCUSSION

Accurate high-resolution datasets on the binding preferences of

TFs for comprehensive collections of DNA sequences are essen-
tial for understanding the nature of protein–DNA binding
specificity and how those specificities are used in transcriptional

regulatory codes encoded in genomes. In this study, we devel-
oped a Bayesian model-based approach for analyzing k-mer TF-
DNA binding specificity data obtained from universal PBM

experiments (Berger et al., 2006). Our model decomposes
k-mer data (here, 8mers) into artifactually high-scoring 8mers,

8mers bound in common by a TF family and those bound pref-
erentially by a particular member(s) of a TF family (TF-pre-
ferred k-mers). Adjusting PBM 8mer E-scores for the identified

systematic biases improved overall PBM data quality and cor-
relations with in vivo TF binding data obtained by ChIP-chip
(Harbison et al., 2004). The TF subclasses identified by our

modeling approach are consistent with TF subclasses based on
TF DBD protein sequence similarity. TF-preferred k-mers are
identified in an automated and systematic fashion by our model,

without relying on visual inspection, manual curation or arbi-
trary thresholds; our model captures TF-preferred k-mers previ-
ously identified through a combination of such other methods

(Berger et al., 2008; Busser et al., 2012), while being more com-
prehensive in identifying statistically significantly TF-preferred

k-mers. Systematic identification of TF-preferred k-mers should
help to reduce investigator bias in searching for TF-preferred k-
mers and should aid in studies aimed at investigating the poten-

tial regulatory significance of TF-preferred versus TF-common
k-mers (Busser et al., 2012; Gordân et al., 2011).
Although our analysis identified 8mers that tend to score

artifactually highly in the universal PBM datasets that we exam-
ined, on its own, it does not provide an explanation for these
observations. We investigated the various data normalizations

that are performed on the universal PBM data, but we did not
find any of them to contribute to artifactually high scores for
these 8mers. We cannot exclude the possibility that these ‘sticky’

8mers constitute a distinct set of non-specific sequences that are
bound by numerous TFs more preferentially than truly nonspe-
cific or even disfavored sequences. Determining the underlying

cause of these ‘sticky’ 8mers will require additional experimental
studies in the future.
To distinguish family-wise-binding effects from systematic

biases, our ANOVA model [Equation (1)] requires a collection

of TFs from diverse DBD classes and a sufficient number of TFs

from each DBD class (at least three in this study). Estimation of

k-mer background noise given a limited number of experiments

(e.g. when adopting a new array design or platform) can be

challenging. In this study, we focused our analysis on the

observed E-scores because of the robustness of the E-score to

experimental variation (Berger et al., 2006). Future development

of non–rank-based approaches might allow for improved classi-

fication of TFs and k-mers.

In this study, we analyzed data from two specific universal

array designs, synthesized based on two different de Bruijn

sequences, each of which covers all 10mers. Our model could

be applied to k-mer data generated using other universal array

designs, including those based on higher-order de Bruijn se-

quences that comprehensively cover longer k-mers (Philippakis

et al., 2008). Moreover, our approach is not limited to array

designs based on de Bruijn sequences, but rather it can be applied

to any datasets using PBMs or other assays for which binding

scores for k-mers are generated.
Numerous studies have focused on different TF structural

classes, with the goal of identifying recognition rules underlying

protein–DNA binding specificity (Benos et al., 2002; De Masi

et al., 2011; Noyes et al., 2008; Suzuki and Yagi, 1994). Precise

classification of TFs according to their DNA-binding sequence

preferences together with identification of those sets of preferred

sequences, as provided by our modeling approach, will permit

more detailed studies of the molecular determinants of TF-DNA

binding specificity. Improved identification of k-mers bound

preferentially by different TF family members will aid in inves-

tigations of what amino acid residues in the proteins correlate

with differences in preferences for binding different k-mers.
Many studies of DNA regulatory elements have searched for

combinations of motifs enriched within known or putative cis-

regulatory elements (Warner et al., 2008), including investiga-

tions of whether there are preferential spacings or orientations

of how the TF binding sites are arranged within promoters (Beer

and Tavazoie, 2004; Senger et al., 2004) or transcriptional enhan-

cers (Arnosti and Kulkarni, 2005). Moreover, how different TF

family members achieve their distinct regulatory effects is still not

well understood; TF-preferred k-mers constitute one mechanism

by which paralogous TFs can attain distinct regulatory roles

(Busser et al., 2012; Fong et al., 2012; Hollenhorst et al., 2009).

More accurate, precise data on the DNA-binding sequence pref-

erences of different TFs, in particular paralogous TFs, will be

important for more detailed investigations of cis-regulatory

codes.
The Bayesian hierarchical ANOVA modeling approach we

present in this study is general and could be applied to other

data types, beyond DNA-binding specificity data. Our modeling

approach could be adapted to other sequence or experimental

datasets to identify data features that are common to classes of

proteins, defined according to either DBD structural class as we

did in this study for sequence-specific TFs or to other annota-

tions which may be more relevant for other types of proteins,

versus features that are specific to individual proteins or subsets

of proteins. Results from such studies might contribute to

an improved understanding of different families of proteins,

including the redundant versus divergent functions of individual
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members of protein families that arose from ancient gene
duplications.
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