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Deciphering the interplay between chromatin accessibility and transcription factor (TF) binding is fundamental to under-

standing transcriptional regulation, control of cellular states, and the establishment of new phenotypes. Recent genome-

wide chromatin accessibility profiling studies have provided catalogs of putative open regions, where TFs can recognize their

motifs and regulate gene expression programs. Here, we present motif enrichment in differential elements of accessibility

(MEDEA), a computational tool that analyzes high-throughput chromatin accessibility genomic data to identify cell-type-spe-

cific accessible regions and lineage-specificmotifs associatedwithTF binding therein. TobenchmarkMEDEA,weused a panel

of reference cell lines profiled by ENCODE and curated by the ENCODE Project Consortium for the ENCODE-DREAM

Challenge. By comparing results with RNA-seq data, ChIP-seq peaks, and DNase-seq footprints, we show that MEDEA im-

proves the detection of motifs associated with known lineage specifiers. We then applied MEDEA to 610 ENCODE DNase-

seq data sets, where it revealed significant motifs even when absolute enrichment was low and where it identified novel reg-

ulators, such asNRF1 in kidneydevelopment. Finally,we show thatMEDEAperformswell onbothbulk and single-cellATAC-

seq data. MEDEA is publicly available as part of our Glossary-GENRE suite for motif enrichment analysis.

[Supplemental material is available for this article.]

In eukaryotic development, gene transcription happens in precise
spatiotemporal patterns that require the specific binding of highly
regulated transcription factors (TFs) to dynamically accessible cis-
regulatory elements. The majority of the approximately 1500 TFs
present in the human genome are up-regulated in a tissue-specific
and cell-type-specific manner (Vaquerizas et al. 2009; Lambert
et al. 2018). The ectopic expression of a combination of fewer
than 10 TFs is often sufficient to drive differentiation and repro-
graming (Riddell et al. 2014). The precise identification of lineage
specifiers, their regulators, and their binding sites is crucial for un-
derstanding how the genome encodes the regulation of gene ex-
pression programs and cellular functions.

Several sequencing-based techniques for genomic profiling of
chromatin accessibility (e.g., DNase-seq [Song and Crawford 2010;
John et al. 2013], FAIRE-seq [Nagy et al. 2003], ATAC-seq
[Buenrostro et al. 2013]) or nucleosome occupancy (e.g., MNase-
seq [Cui and Zhao 2012]) have been developed (for a comparative
review, see Tsompana and Buck 2014). Some of them are widely
used both by large consortia to map the human epigenome in a
high-throughput manner (Thurman et al. 2012; Roadmap
Epigenomics Consortiumet al. 2015) and by an increasingnumber
of laboratories to characterize chromatin accessibility in specific
cell types and cellular conditions. Of these, ATAC-seq is currently
the most versatile assay because it simultaneously identifies open
chromatin regions and nucleosomes, is suitable for single-cell ap-
plications (Buenrostro et al. 2015), and requires both less inputma-
terial (Buenrostro et al. 2013, 2015; Corces et al. 2018) and less

sample handling. However, thus far, there are considerably fewer
ATAC-seq data sets currently available than the extensive DNase-
seq data sets produced by large consortia, such as ENCODE and
the NIH Roadmap Epigenomics Mapping Consortium (The
ENCODE Project Consortium 2012; Thurman et al. 2012;
Roadmap Epigenomics Consortium et al. 2015). These DNase-seq
data sets have enabled the cataloging of open chromatin regions
in a wide variety of human cell types (Thurman et al. 2012;
Roadmap Epigenomics Consortium et al. 2015). The ENCODE
Project Consortium recently reanalyzed a subset of those data to
provide highly curated DNase-seq data sets, together with RNA-
seq and ChIP-seq data sets, for a DREAM Challenge to predict in
vivo TF binding sites (TFBSs) (http://dreamchallenges.org/
project/encode-dream-in-vivo-transcription-factor-binding-site-
prediction-challenge/).

To identify TFBSs, DNase-seq data are often mined for digital
footprints (DFPs), which are short (∼10 bp) sharp decreases of ac-
cessibility within open chromatin regions, suggesting the presence
of bound proteins (i.e., TFs) that locally protect the DNA from
DNase I cleavage (Hesselberth et al. 2009; Pique-Regi et al. 2011;
Li et al. 2019). Although DFP analysis can indicate TFBSs (Neph
et al. 2012b), several experimental and computational limitations
impair its widespread use, including the need for greater seq-
uencing depth compared with standard chromatin accessibility
detection (Tsompana and Buck 2014). Experimentally, footprint
detection is biased by the intrinsic sequence preference of
DNase I, which can be adjusted computationally (He et al. 2014).
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Another bias originates from TFs with short residence time on
DNA (Boyle et al. 2011; Pique-Regi et al. 2011; Buenrostro et al.
2013; Nakahashi et al. 2013; He et al. 2014; Sherwood et al.
2014; Sung et al. 2014), which can hinder footprint detection
and cannot be corrected in silico. Computationally, DFP calling
is challenging, time-consuming (e.g., requires between 31 and
>7000 h of CPU time for a single human genome), and algorithm
dependent (Gusmao et al. 2016), thus welcoming alternative
methods to identify the most relevant TF motifs in a particular
cell type or to prioritize which TF motifs to use for a DFP search.
Moreover, the binding sites identified by a DFP analysis do not in-
formdirectly onwhether the underlyingmotifs are associatedwith
lineage-specific TFs versus general “housekeeping” TFs (e.g., SP1,
CTCF, ZNF143) (Eisenberg and Levanon 2013) or on whether
the identifiedmotifs are significantly enriched in the regulatory el-
ements of that cell type. Furthermore, to our knowledge, there is
no comprehensive DFP database to aid in the analysis of motif en-
richment across cell types.

In the main DNase-seq protocol adopted by ENCODE (John
et al. 2013), the nuclear DNA is digested mildly and purified to se-
lect fragments <500 bp for sequencing. The resulting sequencing
reads can be used to call narrow peaks of∼150 bp, which potential-
ly come from mononucleosomes displaced by TF binding (Neph
et al. 2012b). Therefore, these peaks closely resemble TF ChIP-
seq peaks, which are often used to test for the presence of lineage
specifiers through the enrichment of their TF binding motifs
(Wang et al. 2012; Mariani et al. 2017). The analysis of DNase-
seq peaks for enriched motifs, which is easier and quicker than
DFP calling, has rarely been performed separately from TF ChIP-
seq peaks (He et al. 2012; Stergachis et al. 2013; Goode et al.
2016). Those studies, which focused on a few, well-characterized
mammalian lineages and compared chromatin accessibility pro-
files obtained upon cellular differentiation or activation processes,
showed that dynamically accessible regions can be used to identify
the binding motifs of lineage-specific TFs. Similarly, clustering
ATAC-seq peaks obtained from a large variety of cancer cells fol-
lowed by motif enrichment analysis within each cluster revealed
motifs associated with up-regulated TFs (Corces et al. 2018).
However, such analyses are computationally demanding, may
vary depending on the choice of clustering algorithm, and may
not be feasible in uncharacterized cell types for which closely relat-
ed cellular states are not available to distinguish cell-type-specific
motif enrichment. Therefore, novel statistical methods are needed
for the analysis of chromatin accessibility data to distinguish the
motifs of lineage specifiers.

Despite the role of TF binding within accessible regulatory el-
ements, many other processes can influence chromatin accessibil-
ity beyond cell-type-specific gene regulation (e.g., chromatin
architecture, housekeeping processes, cell cycle), and very few bio-
informatic tools have directly addressed the task of optimizing TF
binding motif enrichment analysis of the accessible genome.
MEME (McLeay and Bailey 2010) and HOMER (Heinz et al.
2010), two popular bioinformatic suites for the analysis and dis-
covery ofmotifs, allow users to find enriched TFmotifs in genomic
data sets through a comparisonwith background sequences, either
provided by the tool or by the users. When provided by the tool,
the background sequences are not specific to the accessible ge-
nome, whichmay introduce compositional biases in themotif en-
richment analysis. When provided by the users, it remains unclear
what features should characterize an unbiased background, poten-
tially leading to discrepant results. An alternative to MEME and
HOMER is SeqUnwinder (Kakumanu et al. 2017), which can be

used to leverage differences in chromatin accessibility profiles be-
tween cell types to improve the detection of enriched motifs asso-
ciated with lineage specifiers. For the sake of flexibility,
SeqUnwinder requires users to provide peak annotation as part
of the input data, which here would require labeling the peaks
that are differentially accessible in each cell type; how such label-
ing is performed could bias the inference of the enriched motifs.
SeqUnwinder also performs a regularization step that requires pa-
rameter optimization and adds stochasticity to the results. The re-
cently developed coTRaCTE tool (van Bömmel et al. 2018) infers
cooperative TF pairs that co-occur in a cell-type-specific manner
within accessible chromatin regions. coTRaCTE takes user-provid-
ed chromatin accessibility peak sets from many cell types, defines
both the most cell-type-specific peaks and the most ubiquitous
peaks, and performs a motif enrichment analysis between them.
Despite directly sorting cell-type-specific peaks, coTRaCTE’s analy-
sis of each data set depends on the user-provided accompanying
data sets, which may impair robustness and reproducibility of
the results. To our knowledge, these computational tools have
not been used extensively to allow evaluation of their accuracy
in inferring motifs associated with lineage-specifying factors
from genomic accessibility profiles.

Here, we presentmotif enrichment in differential elements of
accessibility (MEDEA) as a novel method to analyze genome-wide
chromatin accessibility data for TF binding by evaluating the en-
richment of their motifs within the accessible regions. MEDEA
combines (1) filtering for cell-type-specific accessibility peaks us-
ing a curated, high-quality reference ensemble of accessibility
peaks (e.g., ENCODE-DREAM); (2) calculation of TF motif enrich-
ment against genomic background regions with similar composi-
tional features; and (3) statistical analysis of the typical
enrichment levels of each motif to help the evaluation of users’
results. We benchmarked MEDEA on data obtained by using a va-
riety of assays (i.e., DNase-seq, ATAC-seq, scATAC-seq, and FAIRE-
seq) for the main ENCODE cell lines. We then compared MEDEA
to bioinformatic tools that have similar goals, as well as to tran-
scriptomic and epigenomic profiles. To reveal novel regulatory in-
teractions, we also applied MEDEA to 610 ENCODE DNase-seq
data sets spanning a wide variety of human cell types.

Results

Standard motif enrichment analysis of DNase-seq peaks does not

yield enrichment of the motifs of several known lineage specifiers

We selected a panel of 12 human cell lines from ENCODE
(Thurman et al. 2012) as a benchmark data set, comprising be-
tween 60,036 (H1-hES) and 291,130 (iPS) DNase-seq peaks repre-
senting accessible regions in each cell line, for identification of
the binding motifs of lineage specifiers (Supplemental Table
S1.1). In those DNase-seq peaks, we quantified TF motif enrich-
ment by using the area under the receiver operating characteristic
(AUROC) curve statistic, which is awell-establishedmetric in these
types of analysis (Gordan et al. 2009) and which we used to assess
the presence of a TF motif among the 500 peaks with the highest
signal (input set) compared with a background set of sequences
(Methods) (Weirauch et al. 2013). For the AUROC implementa-
tion, we used two tools that we recently described for the analysis
of TF ChIP-seq data: a TF-8mer glossary, representing the binding
specificities of 671metazoan TFs across all possible 8-bp sequences
(8-mers), and GENRE for the construction of genomic background
sets that arewell matched for the sequence features of the input set
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(Mariani et al. 2017). In our benchmark-
ing analysis of these DNase-seq peaks, we
used 13 glossary modules that describe
the specificities of TF families known to
contain relevant developmental TFs for
the selected cell types (Fig. 1A).

We observed cell-type-specific en-
richment of several expected motifs
(e.g., KLF in H1-hES and K562 cells
[McConnell and Yang 2010], FOX in
HepG2 and MCF-7 cells [Augello et al.
2011]) (Fig. 1A). However, several motifs
associated with known lineage specifiers,
such as GATA in K562 cells (Cantor and
Orkin 2002), IRF inGM12878 (Taniguchi
et al. 2001; Lu 2008), and POU inH1-hES
cells (Young 2011), were not enriched
(Fig. 1A, black boxes; Mariani et al.
2017). Moreover, we noticed systematic
enrichment of certain motifs (KLF, ETS);
such enrichment could originate from
multiple sources, such as experimental
artifacts in the chromatin accessibility
assay, computational biases in thepredic-
tionofmotifs, or the constitutive binding
of genomic target sites by sequence-spe-
cific housekeeping TFs (e.g., KLF3/9,
SP1, and CTCF for the KLF motif) (Eisen-
berg and Levanon 2013). These results
were robust to increasing numbers of
DNase-seq peaks analyzed and to the
use of PWMs instead of k-mermotifmod-
els (Supplemental Fig. S1A,B; Supple-
mental Table S1.4).

As further evaluation, we inspected
RNA-seq transcriptomic profiles provid-
ed by ENCODE-DREAM. For each cell line, we selected the most
cell-type-specifically expressed member of each TF family (Fig.
1B; Supplemental Fig. S2). This analysis showed up-regulation of
GATA1/2 in K562, IRF4/8 in GM12878, and POU5F1 in H1-hES
cells (Fig. 1B, right insets), confirming the up-regulation of TFs
whose motifs were expected, but did not appear, to be enriched
in Figure 1A. The motifs of the pluripotency factors SOX, ZIC,
and TEA in H1-hES and iPS cells were not enriched, despite the
up-regulation of their family members SOX2, ZIC3, and TEAD3
(Supplemental Fig. S2).

To elucidate the origin of such discrepancies, we inspected
the distribution of accessibility peaks and other genomic profiles
in five representative loci that control genes known to be regulated
in a cell-type-specific manner (HBB, IL6, ALB, IGF2, NANOG) (Fig.
1C; Supplemental Fig. S3). In the hemoglobin subunit beta (HBB)
cluster locus, three chromatin accessibility peaks were shared
across many different cell types, despite the fact that H3K4me1
and H3K27ac ChIP-seq peaks, RNA-seq transcripts, and 24
DNase-seq peaks were specific to K562 cells (Fig. 1C). We observed
similar trends at the other loci, with constitutively accessible peaks
always overlapping the ChIP-seq peaks of a variety of ubiquitous
housekeeping chromatin factors (Eisenberg and Levanon 2013;
Heidari et al. 2014), such as CTCF, ZNF143, TAF1, SIN3A, and
SP1 (Supplemental Fig. S3). These results indicate that themost ac-
cessible chromatin regions in a particular cell type may not accu-
rately represent the cell-type-specific cis-regulatory information.

MEDEA enhances the enrichment of TF binding motifs associated

with lineage specifiers

We hypothesized that constitutively accessible regions can hinder
the identification of enriched TF binding motifs of lineage specifi-
ers. To avoid such bias, we developed a computational suite to
detect TFmotif enrichment in differential elements of accessibility
(MEDEA), described below.

The first task of the suite, MEDEA filtering, categorizes the ac-
cessibility peaks specific to an input cell type by performing pair-
wise comparisons between the open regions of the input cell
type and each cell type within a reference panel (Methods) (Fig.
2A). As the default reference panel for filtering, we equipped
MEDEA with 12 highly curated DNase-seq data sets from
ENCODE-DREAM (Supplemental Table S1.1), which encompass
a wide range of lineages and allow the creation of a series of acces-
sible peak subsets (“MEDEA peaks”) for any cell type of interest
(e.g., subset 1: peaks in the input cell type but not in A549; subset
2: peaks in the input cell type but not in GM12878, etc.)
(Supplemental Fig. S4). For each MEDEA peak series, we found
that the top 500 peaks of themedianMEDEA peak subset were still
within the top 12% of peaks overall (Supplemental Table S2).

The second task of the suite, MEDEA AUROC, separately as-
sesses each MEDEA peak subset for motif enrichment by AUROC
(Methods) (Supplemental Fig. S4) and then defines the enrich-
ment of a motif in the input cell type by its median AUROC value

BA

C

Figure 1. TF motif enrichment in DNase-seq peaks partially infers lineage specifiers. (A) For a bench-
marking set of 13 TF binding motifs, AUROC enrichment in a panel of 12 ENCODE cell lines was calcu-
lated using the Glossary motif enrichment tool with background sequences generated with GENRE
software. Black boxes highlight threemotifs (IRF, POU,GATA) expected to be enriched in the correspond-
ing cell lines (GM12878, H1-hES, K562, respectively). (B) For each indicated cell type and TF family, TPM
rank (y-axis) and TPM rank fold-change (x-axis) of themost up-regulated TF. Each TF’s rank is determined
according to RNA-seq TPM levels of all genes and serves as a measure of the TF’s expression. The TPM
rank fold-change of each TF is assessed by comparing the TF’s rank in the indicated cell type to the
TF’s median rank across the remaining cell types as a measure of the TF’s up-regulation. (Right insets)
TPM rank and TPM rank fold-change evaluation of the TFs in the indicated families and cell types. The
values and names of the most up-regulated TFs are colored in red. (C) Screenshot of the UCSC
Genome Browser for the hemoglobin subunit beta (HBB) cluster locus (Chr 11: 5,220,000–
5,320,000). Genomic profiles of five cell lines used in this study are from ENCODE. Three locations of con-
stitutively accessible peaks are highlighted.
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across the series (Fig. 2B; Supplemental Fig. S4, green asterisks).
Across the panel of selected cell types and motifs, the AUROC val-
ues were largely homogeneous within each series (Supplemental
Fig. S4, right insets), suggesting the stability of the method. The
use of the median AUROC (“MEDEA AUROC”) ensures robustness
against outliers, which could appear when the input cell type is
similar to a reference cell line. In the case of the pluripotent cell
types H1-hES and iPS, their differential peaks relative to each other
showno enrichment formotifs of pluripotency factors (e.g., POU),
but enrichment of pluripotency motifs is identified nevertheless
by the MEDEA AUROC because of the comparisons to other unre-
lated cell types in the reference panel (e.g., HepG2) (Supplemental
Fig. S4).

The MEDEA AUROC values often highlighted different mo-
tifs than those enriched without MEDEA filtering (cf. Fig. 1A and
Fig. 2B). In agreement with the high expression of IRF4/8 in
GM12878 and GATA1/2 in K562 cells (Fig. 1B), MEDEA revealed
enrichment of the IRF and GATA motifs in DNase-seq data from
those cell lines, respectively, as quantified byAUROCvalues signif-
icantly higher than the “nonenrichment” value of 0.5, which had
been seen before filtering (cf. Fig. 1A and Fig. 2B). Similarly, POU
and other motifs (e.g., SOX, ZIC, TEA) associated to pluripotency
and embryonic TFs (e.g., POU5F1/SOX2 [Young 2011], ZIC2/3
[Luo et al. 2015], and TEAD3/4 [Yagi et al. 2007]; (Supplemental

Fig. S2) marked H1-hES and iPS cells
(Fig. 2B). In contrast to the enrichment
patterns obtained without filtering,
MEDEA did not systematically enrich
for the KLF or ETS motifs across cell lines
(cf. Fig. 1A and Fig. 2B). Furthermore, the
MEDEA AUROC values were robust to
the number of input peaks and TF motif
model (i.e., k-mer models vs. PWMs)
(Supplemental Fig. S1C,D).

To benchmark the performance of
MEDEA against prior motif enrichment
analysis tools, we compared the motif
enrichment results obtained from apply-
ing various alternative tools to our
benchmarking panel of DNase-seq data
for 12 ENCODE cell lines and of 13 TF
motifs. First, we tested AME from the
MEME suite (McLeay and Bailey 2010)
and findMotifsGenome.pl from the HO-
MER suite (Heinz et al. 2010), both of
which quantify whether a particular
motif set is enriched within a set of
input sequences. When we used these
tools’ default backgrounds (Supplemen-
tal Fig. S5A,B), we obtained two marked-
ly distinct motif enrichment patterns,
with limited motif enrichment of the
expected lineage specifiers. We then
asked whether using the ENCODE-
DREAM data sets as the user-defined
background sequences, and not as the
comparative sequences for MEDEA fil-
tering, could improve the detection of
enriched motifs. To test this possibility,
we used such data sets as background se-
quences both with the AUROC imple-
mentation (Fig. 2C; cf. with Fig. 1A)

and with AME (Supplemental Fig. S5C; cf. with Supplemental
Fig. S5A); in neither case did this improve the enrichment of
the expected motifs. Finally, analysis of this reference panel using
the recently proposed tool coTRaCTE (van Bömmel et al. 2018)
resulted in constitutive enrichment of several lineage-specifying
motifs (FOX, GATA, POU, SOX, TEA) across cell lines (Fig. 2D),
which we interpreted as an artifact of comparing cell-type-specif-
ic peaks to ubiquitous peaks as opposed to peaks specific to an-
other cell type.

To quantitatively compare the motif enrichment results ob-
tained by these different methods, we again turned to RNA-seq
data (Fig. 1B). Briefly, we correlated the up-regulation of TF fam-
ilies with the enrichment of their corresponding motifs in the
various input sets, backgrounds, and software programs used
(Fig. 2E; Supplemental Fig. S6). By using these correlation values
as our metric, MEDEA outperformed all the other methods
(Fig. 2F), thus confirming the overall improvement of motif en-
richment obtained after an accurate filtering of accessibility
peaks for cell-type specificity. We further validated that these cor-
relation values were robust to the number of input peaks. Al-
though the RNA-seq correlation for the unfiltered DNase-seq
peaks slightly improved upon inclusion of more peaks, MEDEA
is already correlated better with the top 500 peaks (Supplemental
Fig. S7).

E F

BA C

D

Figure 2. Motif enrichment of differential elements of accessibility (MEDEA). (A) Schematic for MEDEA
peak filtering. Chromatin accessibility peaks of a cell type of interest (Cell X) and of a reference cell type
(e.g., Cell A) are compared. Overlapping peaks, which indicate constitutively accessible regions, are sub-
tracted out, thus only selecting the peaks specific to the cell type of interest (X not in A) that are likely
bound by lineage-specific TFs (TFx). (B–D) For the same TF bindingmotifs and cell lines of Figure 1A, anal-
ysis of motif enrichment obtained by using (B) MEDEA (filtering and AUROC), (C) Glossary’s AUROC us-
ing ENCODE-DREAM DNase-seq data sets as background sequences for enrichment calculation, and (D)
coTRaCTE. Boxes highlighting known lineage specifiers as in Figure 1A. (E) For the TF families and cell
lines used to benchmark MEDEA, scatter plots to correlate transcriptomic up-regulation (x-axis values
from Fig. 1B) and MEDEA AUROC (Fig. 2B). (F) Barplot of the correlation coefficients (Pearson’s R) be-
tween TF up-regulation and motif enrichment obtained from different methods (in red; R from
MEDEA, as in E). For additional scatterplots depicting correlations for other methods, see also
Supplemental Figure S6.
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MEDEA selects for active regulatory regions and correlates with

the recruitment of lineage specifiers

The recruitment of lineage-specific TFs in regulatory regions is of-
ten associated with the displacement of occluding nucleosomes
and the deposition of active histone marks in the surrounding nu-
cleosomes (Ghisletti et al. 2010; Heinz et al. 2010). Therefore, we
examined the colocalization of accessibility peaks with ChIP-seq
peaks for both histone marks H3K4me1, which has been associat-
ed with enhancers, and H3K27ac, which marks active enhancers
(Fig. 3A, top), as well as the coactivator EP300 (Supplemental Fig.
S8), which is also a mark of active enhancers (Calo and Wysocka
2013). These ChIP-seq peaks showed significantly higher overlap
with theMEDEA-filteredDNase-seq peaks thanwith the unfiltered
DNase-seq peaks. Concomitantly, we noticed that MEDEA-filtered
peaks were depleted of CTCF (Fig. 3A, bottom) and other house-
keeping chromatin binders (e.g., ZNF143, SIN3A, SP1, POLR2A,
TAF1) (Supplemental Fig. S8). Altogether, these results indicate
that MEDEA improves the detection of lineage-specific regulatory
motifs by filtering for accessible regions that are associated to cell-
type-specific active enhancers and dismissing peaks associated to
common chromatin binders.

To further corroborate that MEDEA-filtered peaks are en-
riched for regulatory regions recognized by cell-type-specific

TFs, we inspected TF footprint data (DFPs). Briefly, for three of
our benchmark cell lines (GM12878, K562, and H1-hES), we first
identified a high-confidence set of DFPs that contained TF motifs
supported by ChIP-seq data for the corresponding TFs (Li et al.
2019). Next, we evaluated these high-confidence DFPs for coloc-
alization with both the MEDEA-filtered peaks and the unfiltered
DNase-seq peaks, and we determined their fold-change (Fig. 3B).
The TFs whose DFPs were more colocalized with MEDEA-filtered
peaks were often associated to known lineage specifiers, such as
POU5F1 in H1-hES, IRF4 and SPI1 in GM12878 (Wang et al.
2012), and GATA1 and TAL1 in K562 (Wadman et al. 1997).
These results, which are in strong agreement with the enriched
motifs detected by MEDEA AUROC (Fig. 2B), further indicate
that MEDEA filtering selects accessible regions that regulate cell
identity. This analysis also suggested a previously unappreciated
pivotal role for TCF12 in embryonic stem cells, MEF2A and
JUND in GM12878 B cells, and NR2F2 and JUND in K562 eryth-
roleukemia cells. We evaluated these predictions by checking for
the enrichment of these candidate motifs in their associated TF
ChIP-seq peaks in factorbook (Wang et al. 2012). Analysis of
ChIP-seq data for those TFs (TCF12, MEF2A, NR2F2, and JUND)
showed significant enrichment and centering within the ChIP-
seq peaks for their cognate motifs and for the motifs of lineage
specifiers (POU5F1, GATA1, TAL1, IRF4, SPI1) in those cell lines

(Supplemental Fig. S9), suggesting that
the ChIPed TFs bind directly to DNA
with cobinding of these lineage specifi-
ers. Altogether, these results support
the claim that MEDEA analysis of chro-
matin accessibility data can highlight
lineage specifier motifs.

MEDEA analysis across 610 ENCODE

DNase-seq data sets reveals known and

novel regulatory interactions

underlying lineage specification

To show the potential of MEDEA to re-
veal novel biological features, we applied
MEDEA to more cell types represented in
ENCODE. At first, we focused on the
transition from ESCs through hemato-
poietic progenitors (HPs) to a variety of
well-characterized committed lineages
(B, Th1, Th2, and NK cells) (Supplemen-
tal Fig. S10A; Supplemental Table S1.3;
Stergachis et al. 2013). We applied ME-
DEA with its default settings (i.e., filter-
ing against a panel of 12 reference
ENCODE-DREAM data sets and using
median AUROC for scoring) to evaluate
the enrichment of motifs for several
well-characterized regulators of these
cell types (e.g., EBF1, RUNX, NFIL3)
(Zhu and Paul 2008; Kamizono et al.
2009; Ramírez et al. 2010). Similar to
our previous results (Fig. 2B), MEDEA
prevented the constitutive enrichment
of certainmotifs (e.g., KLF, ETS, NANOG)
and revealed enriched motif signatures
specific to each cell type, associated to
the expected regulators (e.g., TCF3 and

BA

Figure 3. MEDEA filtering selects accessible peaks associatedwith active enhancers and TF binding. (A)
Percentages of either the unfiltered DNase-seq peaks (purple bars; from Fig. 1A) or the MEDEA-filtered
DNase-seq peaks (pink bars; mean and SD in each MEDEA-filtered series is presented; from Fig. 2B)
that overlap ChIP-seq peaks for the indicated chromatin marks (top) or CTCF (bottom) in the indicated
cell types. Asterisks indicate where the overlap percentages for the MEDEA-filtered peaks are significantly
different (P<0.01) from those of the unfiltered peaks (red stars indicate higher; black stars, lower). (B) The
fold-change between the percentage of MEDEA-filtered peaks and unfiltered DNase-seq peaks that over-
lap DNase-seq footprints (DFPs) of the indicated TF. ChIP-seq-validated footprints were obtained from
the HINT algorithm (Li et al. 2019). TFs were ordered according to fold-change of DFP overlap upon
MEDEA filtering (red labels highlight TFs with mean fold-change > 2).
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SPI1 in B cells [Ramírez et al. 2010] and NFIL3 in NK cells [Kami-
zono et al. 2009]) (Supplemental Fig. S10B,C).

To further expandMEDEA analysis to predict novel regulators
in less-characterized cell types,we extendedour analysis to 610EN-
CODEDNase-seq data sets, comprising 188 cell types (Supplemen-
tal Table S1.2). To encompass the known repertoire of human TF
binding motifs, we equipped the MEDEA suite with a curated col-
lection of 207 TF specificity models that includes 99 PWMs (Jolma
et al. 2013;Humeet al. 2015) andapublished k-mer glossary for 108
TF binding specificity models (Mariani et al. 2017). We quantified
the motif enrichment of this collection in each DNase-seq data set
(i.e., 207motif models × 610 DNase-seq data sets = 126,270 combi-
nations) by MEDEA AUROC (Fig. 4A, y-axis in left panel; Supple-
mental Table S3.1). Because we observed large variability of the
MEDEA AUROC values across these 126,270 combinations, we
used the AUROC values obtained in the same DNase-seq data sets
withoutMEDEA filtering as reference for the nonspecific motif en-

richment variability (Fig. 4A, x-axis in left panel; Supplemental Ta-
ble S3.1). We investigated the potential sources of this large
variability to check for potential biases in the motif enrichment
analysis. Here, we reasoned that AUROC values can be modulated
both by genuinemotif enrichment and by biases associated to par-
ticular motifs or cell types, such as the systematic enrichment we
reported for KLF and ETS (Fig. 1A). We tested for both types of
bias by using multivariate analysis of variance (MANOVA) of the
AUROC distribution, which grouped the AUROC values by cell
type or motif and tested whether the variability between groups
was larger than the variability within groups. Although both tests
were significant (F-statistic P<0.001), this analysis revealed that bi-
ases owing to motifs were much stronger than biases owing to cell
types (FMotifs = 640 vs. FCell Types = 4.2; Supplemental Methods).
Therefore, to control for motif-associated biases, we stratified the
AUROCvalues bymotifs, which resulted in far less dispersed distri-
butions (Fig. 4, cf. B andD), thus allowing for better discrimination

of those DNase-seq data sets that are en-
riched for a particular motif.

The third and final task of the ME-
DEA suite,MEDEA thresholding, leverag-
es the fact that the motif-stratified
AUROC distributions are typically char-
acterized by a small pool of high MEDEA
AUROC values (“high pool”) that lie
above the bulk of the AUROC values
(“low pool”) and are most likely to con-
tain the cell types whose DNase-seq data
are enriched for the particular motif
(Fig. 4B; Supplemental Fig. S11). To
distinguish between these two pools, we
determined motif-specific thresholds
(“MEDEA thresholds”; Methods) (Fig.
4B, green lines; Supplemental Figs. S11,
S12B), which have an average value of
0.55 (±0.03) (Fig. 4C; Supplemental
Table S3.2). Certain motifs can show a
significant enrichment value even if
their MEDEA AUROC is close to 0.5 (typ-
ically considered to indicate lack of
enrichment).

We reasoned that the incorporation
of these thresholds inMEDEA could help
in evaluating whether the enrichment of
a motif is significant, and thus could po-
tentially reveal biologically relevant cis-
regulatory motifs that might be missed
by standard analyses. To explore this pos-
sibility, we first checked whether the cell
types within each motif’s high pools
were similar to each other, which was of-
ten the case. The RFX high pool mostly
contained cell types from the neuronal
lineage (Fig. 4B, left), confirming previ-
ous findings on the essential role of
RFX in sensory neuron differentiation
(Swoboda et al. 2000). Despite the fact
that the NF-kB and NFATmotifs are asso-
ciated to two related families of Rel
Homology Domain (RHD) TFs mostly
known for their roles in B- and T-cell ac-
tivation (Müller and Rao 2010; Siggers

E

B

A

C

D

Figure 4. MEDEA analysis of 610 ENCODE DNA-seq data sets reveals known and novel enriched TF
motifs. (A, left) Density distribution of the AUROC values obtained from the 207 TF specificity models
(i.e., 99 PWMs and 108 k-mer models) in 610 ENCODE DNase-seq data sets (Supplemental Tables S1,
S3). (Center, right) Merging the high (center) or low (right) pools for all the TF specificity models shows
how the whole density distribution is formed by these two pools. The “high pool” refers to motif/cell
type combinations whose MEDEA AUROC is above the motif’s empirically derived threshold.
Percentages refer to the motif/cell type combinations distinguished by the depicted AUROC threshold
of 0.6 for the unfiltered DNase-seq peaks (black lines). (B) For the indicated specificity models, the subset
of AUROC values from A. Each dot corresponds to the AUROC enrichments of the indicated motif in a
particular cell type. For the most relevant MEDEA AUROC values, the underlying cell types are indicated.
By setting a threshold at ∼3 SD away from the MEDEA AUROCmedian for each specificity model (green
line) (Supplemental Table S3.2, Methods), the subsets were divided into high and low pools (red and
blue points, respectively) (Supplemental Table S3.3). (C) A histogram of the 207 threshold values applied
to all the motif-based subsets (Supplemental Table S3.2) to call high and low pools. The threshold values
are highlighted in the scatterplots of B and of Supplemental Figures S11 and S12B. (D) For the indicated
cell types, the subset of AUROC values from A. For the most relevant MEDEA AUROC values, the under-
lying TF specificity models are indicated. (E) For nine pairs of highly related cell types (Supplemental
Methods), the TF specificity model classification in the “high pool” was used to calculate the F1 scores
between either matched or unmatched cell types.
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et al. 2012), the NF-kB high pool contained just lymphoid cells, as
expected (Fig. 4B, center), whereas the NFAT high pool contained
mostly muscle and a few endothelial cell types, in agreement with
prior studies (Fig. 4B, right; Horsley and Pavlath 2002). Similarly,
many other high pools were enriched for specific lineages
(Supplemental Fig. S11), both confirming well-characterized regu-
latory functions (e.g., EBF1 in B cells [Boller et al. 2016], MEF2 TFs
in the heart [Lin et al. 1997], HNF1 and HNF4 in kidney and intes-
tinal tissues [Ryffel 2001], LIM TFs in the eye [Porter et al. 1997],
TCF7 in immune cells [Wu et al. 2012], and TAL bHLH TFs such
as ATONAL, NEURO TFs and OLIG TFs in the brain [Imayoshi
and Kageyama 2014]) and supporting less-characterized ones
(e.g., EBF1 in in vitro differentiated bipolar neurons [Garel et al.
1999], LIM TFs in neuroblastoma [Durbin et al. 2018], and KLF
in gastrointestinal tissues [Katz et al. 2002]). Altogether, these ex-
amples show that the use of motif-specific MEDEA thresholds
aids in identifying lineage specifiers.

We also checked for enrichment biases owing to motif simi-
larities. In the case of KLF, its core consensus sequence is contained
within the CTCF motif (Supplemental Fig. S12A); therefore, the
constitutive enrichment of the KLF motif observed in unfiltered
peaks (Fig. 1A) could come from constitutive open regions encom-
passing CTCF TFBSs (Fig. 1C). When we compared KLF and CTCF
AUROC values across the 610 ENCODE data sets, we indeed no-
ticed that the CTCF motif had a far less pronounced enrichment
compared with the KLF motif (Supplemental Fig. S12B), despite a
strong correlation both before and upon MEDEA filtering
(Supplemental Fig. S12C). MEDEA decreases KLF motif enrich-
ment substantially (Supplemental Fig. S12C, dashed line), likely
because of the removal of CTCF TFBSs (Fig. 3A, bottom). Overall,
these observations agree with our hypothesis that KLF motif en-
richment is in part contaminated by overlapping CTCF motifs,
but such bias is mitigated by MEDEA filtering.

The vast majority of the high pool enrichedmotifs would not
have been discovered without MEDEA filtering of the DNase-seq
peaks (Fig. 4B, x-axis). At an AUROC threshold of 0.6 across all mo-
tifs, the use of unfiltered DNase-seq peaks would have (1) missed
6352 (∼87%) of the high pool cases from being identified as en-
riched (Fig. 4A, center), and (2) misidentified 3445 (∼3%) of the
low pool cases as enriched (Fig. 4A, right). Thus, accurate prefilter-
ing of cell-type-specific accessible regions profoundly changed the
identification of enriched motifs, which mostly agreed with prior
reports on the regulatory roles of the corresponding TFs.

Clustering of motif enrichment data from MEDEA reveals novel

regulatory principles underlying lineage specification

To explore howMEDEAwill impact the inference of motif enrich-
ment for single data sets submitted by users, we rearranged all the
AUROC low and high pools according to cell type (Fig. 4D;
Supplemental Fig. S13). To evaluate the accuracy of the enriched
motifs, we selected nine matched pairs of similar cell types (e.g.,
“right lung” vs. “left lung” cells; Supplemental Methods) that we
expected to share similar motif enrichment patterns. We found
that the correlation between matched samples was much greater
than that between dissimilar cell types (P-value<<0.01,
Wilcoxon test) (Fig. 4E), thus confirming that MEDEA captures
biologically relevant features of transcriptional regulatory pro-
grams. Inspection of themotif enrichment results confirms the ac-
curacy of the MEDEA results (Fig. 4D; Supplemental Fig. S13). As
examples, in spinal cord cells (Fig. 4D, left), MEDEA identifiedmo-
tifs that correspond to TFs known to play roles in neuronal differ-

entiation (e.g., NFIX [Deneen et al. 2006], OLIG [Takebayashi et al.
2002], YY1 [He et al. 2007]), whereas SOX (Stolt et al. 2002)was the
only motif shared with neuronal stem progenitor and pluripotent
cells (e.g., NT2 D1) (Supplemental Fig. S13). As another example,
MEDEA not only identified the expected RUNX/ETS motifs in T
cells (Fig. 4D, center) but also revealed the relevant TCF7/NF-kB
motifs despite their low MEDEA AUROC values, highlighting the
power of MEDEA thresholding (Fig. 4C). In forelimb muscle cells
(Fig. 4D, right), MEDEA highlighted both the known regulator
NFIX (Messina et al. 2010) and also the NFAT, MYF, ZBTB18, and
TAL/E2A/TCF3 motifs, whose roles in this cell type are less charac-
terized but are partially shared with related tissues (e.g., “tongue”
in Supplemental Fig. S13). In yet more cell types, MEDEA uncov-
ered enriched motifs that confirmed well-characterized regulatory
interactions (e.g., GATA/MEF2 TFs in cardiac tissues, LHX and oth-
er homeodomain factors in retinal development, GATA TFs in ad-
renal tissues), reinforced less characterized ones (e.g., estrogen
receptor and Jun factors in adrenal tissues), and distinguishedmo-
tifs between cell types from the same lineage (e.g., islet precursor
and body of pancreas cells within the pancreatic lineage)
(Supplemental Fig. S13).

To investigate how motif enrichment patterns reflect regula-
tory programs, we clustered theMEDEAAUROC values of the high
pools by TF motifs and by cell types (Fig. 5; Supplemental Fig. S14;
Supplemental Table S3.3). Cell types largely clustered according to
their lineage class (Fig. 5, colored bars at the top), supporting the
claim that the MEDEA AUROC values capture genuine features
of cell fate specification. For example, the enriched motifs found
inDNase-seq data fromplacenta and trophoblast cells clustered to-
gether tightly (Fig. 5). The GCM1 and AP2 motifs were enriched
very specifically in this small cluster, in agreement with previous
observations that GCM1 is involved in placental growth factor ex-
pression in human trophoblast-derived cells (Li and Roberson
2017) and TCFAP2C establishes the extraembryonic trophoblast
maintenance program in murine embryos (Kuckenberg et al.
2010). The GRHL1 motif also shows enrichment in these two

Figure 5. Clustering analysis ofMEDEA enrichedmotifs in ENCODE data
sets reveals the TF regulatory patterns behind cellular differentiation. 2D-
hierarchical clustering of the MEDEA AUROC values for the high pool
(Fig. 4A, center). Black frames within the heatmap outline examples of en-
riched motifs within the indicated phenotypes. Colored bars to the top of
the heatmap show how six representative cell type classes (top right) are
distributed upon clustering.
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tissues, and its paralogGRHL2 (which recognizes a similarmotif) is
specifically expressed in the placenta, where it controls tropho-
blast branching morphogenesis in mice (Walentin et al. 2015).

The compact clusters comprising themajority of tested hema-
topoietic cell samples (light blue bars in Fig. 5) and the majority of
tested endothelial samples (dark blue) formed a supercluster
(“hemangioblast supercluster”), potentially reflecting the embry-
onic derivation of both cell types from a common hemangioblast
precursor. Motifs for FLI1 and other ETS domain TFs were strongly
enriched throughout the supercluster, as expected because FLI1 is a
known regulator of both hematopoiesis and angiogenesis in hu-
mans and other vertebrates (Smeets et al. 2013; Toyama et al.
2017; Wang et al. 2018). In contrast, motifs for SOX and FOX TFs
were preferentially enriched in the endothelial cell cluster whereas
the RUNXmotif showed strong enrichment in bloodbut not endo-
thelial cells, supporting results from a prior study that found differ-
ential expression of SOX and FOXC genes in hemangioblast-like
cells and RUNX1 in the committed hematopoietic cells sorted
from human-derived embryoid bodies (Garcia-Alegria et al.
2018). The hematopoietic cluster also showed preferential enrich-
ment of SNAI motifs, potentially reflecting the well-characterized
involvement of SNAI1 in epithelial-to-mesenchymal transitions,
including the development of blood cell precursors from hemo-
genic endothelium (Goossens and Haigh 2012).

We observed a cluster containing most of the kidney-derived
samples (Fig. 5), which showed enrichment for several very similar
HOX motifs (e.g., HOXD9, CDX2), consistent with the known
roles of these factors in kidney development. Hoxd9/Hoxd10
knockout mice show a severe reduction in kidney size (de la Cruz
et al. 1999), and a CDX2-Cre construct drives expression in kidney
(Reyes-Fernandez and Fleet 2016). This kidney cluster also showed
enrichment of the motif for the metabolic regulator NRF1, which
has been shown to be expressed at lower levels in clinical samples
from chronic kidney disease (CKD) patients undergoing dialysis
than in healthy controls (Zaza et al. 2013; Hashad et al. 2016).

This observation was previously interpreted as evidence of a ho-
meostatic response to oxidative stress secondary to dialysis; how-
ever, our results suggest the alternative possibility that lower
levels of NRF1 expression may predispose people to the develop-
ment of CKD. Consistent with this hypothesis, a study combining
CKD GWAS with analysis of eQTLs in healthy kidney samples
found that kidney eQTLs are significantly enriched in NRF1 bind-
ing sites described by ENCODE (Ko et al. 2017). Collectively these
various examples show how MEDEA analysis of accessibility pro-
files can suggest hypotheses of clinically relevant regulatory
interactions.

MEDEA can be applied to data from other chromatin accessibility

profiling technologies

Next, we investigatedwhether application ofMEDEA,without any
modifications, can identify TF motif enrichment in data obtained
from other types of genome-wide chromatin accessibility assays.
For several of the ENCODE cell lines that we used to benchmark
MEDEA, data sets obtained by ATAC-seq, scATAC-seq, or FAIRE-
seq were publicly available. Motif enrichment analysis of those
data sets without MEDEA filtering confirmed several results that
we had obtained when analyzing the corresponding unfiltered
DNase-seq peaks, such as a lack of strong enrichment for the
POU motif in embryonic stem cells, the IRF motif in GM12878
cells, and the GATA motif in K562 cells (cf. Fig. 6A and Fig. 1A).
We then used MEDEA filtering (i.e., the default 12 ENCODE-
DREAMDNase-seq data sets) andMEDEA AUROC, which revealed
the enrichment of several motifs (Fig. 6B), such as the ones men-
tioned above and also of pluripotency/embryonic factors (SOX,
KLF, ZIC, TEA, and FOX) in hES cells.

Similar to our previous comparisons (Fig. 2E,F), we evaluated
the AUROCmotif enrichment of TFs by their correlation with the
corresponding transcriptomic up-regulation from RNA-seq data
(Fig. 6C; Supplemental Fig. S15). For all assays, we observed that

this correlation was higher with MEDEA
peaks than with unfiltered peaks (Fig.
6D, pink vs. purple bars), indicating
that MEDEA improves motif enrichment
analysis of accessibility data obtained
frommultiple different chromatin acces-
sibility profiling technologies.

Discussion

MEDEA is a computational suite created
to identify the motifs of lineage-specify-
ing TFs that are enriched within the ac-
cessible chromatin regions in any cell
type. To achieve this goal, MEDEA per-
forms three main tasks: (1) filtering the
accessible regions to identify relevant,
cell-type-specific peaks; (2) assessing the
filtered, accessible regions for enrich-
ment of a large collection of human TF
binding motifs; (3) imposing motif-spe-
cific thresholds on enrichment to identi-
fy lineage specifiers. To validate MEDEA,
here we compared results from analysis
of DNase-seq (Figs. 1, 2) and ATAC-seq
(Fig. 6) data against RNA-seq and ChIP-
seq data (Fig. 3) and characterized lineage

BA C

D

Figure 6. Generalization of MEDEA to other types of chromatin accessibility assays. (A,B) For the peaks
obtained with the indicated chromatin accessibility assays in indicated cell lines, the AUROC enrichment
of the 13 benchmarking motifs evaluated by using either (A) AUROC with GENRE background or (B)
MEDEA. MEDEA-filtered peaks were obtained by contrasting the peaks in the indicated assays with the
default panel of 12 ENCODE-DREAM DNase-seq data sets. Black boxes as in Figure 1A and Figure 2, B
through D. (C) For the bulk ATAC-seq data sets, scatterplot to correlate the MEDEA AUROC (top panel
in B) with the associated transcriptomic up-regulation (y-axis values from Fig. 1B). (D) Barplot to compare
the correlation coefficients (Pearson’s R) between TF up-regulation and motif enrichment obtained with
the different assays, either by using (1) AUROC with GENRE background (purple bars) or (2) MEDEA
AUROC (pink bars). For additional scatterplots depicting correlations for other assay/method combina-
tions, see also Supplemental Figure S15.
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specifiermotifs solely by their enrichment in chromatin accessibil-
ity profiles (Figs. 4, 5).

The need for motif enrichment tools specifically designed for
analysis of chromatin accessibility data as opposed to TF ChIP-seq
data is a problem that previously had not been addressed suffi-
ciently. In TF ChIP-seq data, for a TF that binds DNA directly
through its ownDNA binding domain, its cognatemotif is typical-
ly anticipated to be enriched and centered within the ChIP-seq
peaks. In contrast, there is no expectation of motif centering with-
in chromatin accessibility peaks, whichmerge the influence of nu-
cleosome organization and the many TFs active in a given cell
type. Although these aspects challenge the identification of the
most relevant TF bindingmotifs in a given cell type, chromatin ac-
cessibility assays, in principle, allow amuch broader exploration of
potential cis-regulatory motifs within a cell type. Thus, because
multiple lineage-specific TFs may be active in any one cell type
(Fig. 4D,E), it is not surprising that their corresponding motifs
may show relatively low (0.55 on average) (Fig. 4C) enrichment
scores (MEDEA AUROC values) in a particular cell type’s chroma-
tin accessibility data set (Fig. 4D).

Our finding that MEDEA filtering selects for regulatory re-
gions without requiring any additional information on other epi-
genetic features (e.g., histone marks, TF binding) supports a
recent study of murine tissue-specific enhancers (Fu et al. 2018)
in which detection of active enhancers was improved by res-
tricting to DNase-seq or H3K27ac ChIP-seq peaks that differed be-
tween phenotypically distant tissues. Although the incorporation
of additional epigenomic information (e.g., ChIP-seq profiles of
binding factors or histone marks) could potentially improve the
power of MEDEA in identifying enriched motifs associated with
regulatory elements, MEDEA requires only chromatin accessibili-
ty data; moreover in many research and clinical applications,
it may be too costly or tissue samples may be too limiting to
be able to generate additional epigenomic data sets (e.g., TF
ChIP-seq).

MEDEA outperformed other state-of-the-art tools, as evaluat-
ed by the correlation ofmotif enrichment in open chromatin with
the up-regulation of the cognate TFs. Two features of MEDEA are
likely major contributors to its improved performance. First, in-
stead of constructing the background for the motif enrichment
analysis from genomic regions open in other cell types (as in
AME with user-supplied background) or from regions open across
cell types (as in coTRaCTE), for any particular cell type, MEDEA
identifies chromatin accessibility peaks specific to that cell type
compared individually with a panel of reference cell types before
any enrichment analysis is performed. Second, MEDEA performs
motif enrichment analysis using compositionally matched geno-
mic regions as background sequences. Incorporation of either or
both of these approaches might improve the performance of other
tools used for analysis of chromatin accessibility data.

MEDEA is also the only available tool equipped with a highly
curated reference chromatin accessibility data set; this reference
panel is essential for its robustness, flexibility, and reproducibility,
as well as for its integration with other tools such as SeqUnwinder.
Because SeqUnwinder requires prelabeled open regions to deter-
mine cell-type-specific enriched motifs, MEDEA filtering can be
used to generate such labels by categorizing open regions accord-
ing to their specific presence in MEDEA reference sets. As
SeqUnwinder identifies de novo motifs using MEME, it would be
interesting to compare those motifs with the knownmotifs found
enriched within the MEDEA collection. Overall, MEDEA offers a
middle ground among the other methods: It takes user-defined

peaks and defines cell-type-specific labels itself and independently
from other data sets.

MEDEA analyzes chromatin accessibility peaks to quickly
provide a genome-wide characterization of overrepresented mo-
tifs, allowing users to infer the lineage-specifying TFs that may
be particularly important for gene regulatory programs in a given
cell type. MEDEA is an orthogonal approach to the identification
of DFP, which requires higher read coverage compared with stan-
dard peak calling in order to identify specific sites of TF occupancy
within chromatin accessibility data (Tsompana and Buck 2014).
The bias observed in DFP calls against TFs with short residence
times on DNA (Sung et al. 2014) does not apply to the data used
by MEDEA, as long as the regions containing such a TF’s binding
sites remain accessible when the TF is transiently released. In con-
trast to DFP algorithms, which limit the analysis to single accessi-
bility profiles (Gusmao et al. 2016) or to time series data across
cellular differentiation (Sherwood et al. 2014), MEDEA is empow-
ered by integrating data from awide reference panel of cell types to
identify genomic regions that are accessible in a cell-type-specific
manner.

By using highly curated chromatin accessibility data (e.g.,
DNase-seq data from ENCODE-DREAM), we showed that MEDEA
can filter cell-type-specific peaks obtained from ATAC-seq,
scATAC-seq, or FAIRE-seq. This ability to integrate information
from different chromatin accessibility assays is crucial, as it obvi-
ates the need to generate additional assay-specific reference panel
data sets for each new technology thatmay be developed in the fu-
ture for profiling accessible regions of the genome. Indeed,MEDEA
may serve as a useful computational validation tool to assess the
quality of chromatin accessibility data resulting from novel assays.

Methods

Public data accession and preprocessing

All analyzed data used in this study were previously published and
their file accessions are provided in Supplemental Table S1. We
used replicate data sets when available. Data were downloaded
from ENCODE, ENCODE-DREAM (http://dreamchallenges.org/
project/encode-dream-in-vivo-transcription-factor-binding-site-
prediction-challenge/), and the NCBI Gene Expression Omnibus
(GEO). We omitted data sets from ENCODE that had red flags or
multiple yellow flags indicating concerns about data quality. For
DNase-seq and ATAC-seq data sets, we considered just 150-bp
peaks that were present in both replicates according to a reciprocal
overlap of 50% (command “intersectBed” in BEDTools) (Neph
et al. 2012a). The overlapping peaks were merged, trimmed at
150 bp, and assigned an average signal intensity value. For
scATAC-seq data sets, we considered single replicate count matri-
ces of the top 50,000 peaks, we ranked the peaks by the percentage
of associated cells, and we trimmed the peaks to 150 bp. FAIRE-seq
datawere alreadymerged, sowe only trimmed to 150 bp. For ChIP-
seq data, we collected all the ENCODE data sets specific to the 12
benchmarking cell lines as narrowPeaks for a variety of constitu-
tive chromatin binding factors (Fig. 3A, bottom; Supplemental
Fig. S8) and as broadPeaks for two histone marks (Fig. 3A, top);
they were used without further postprocessing.

For TF DFPs, we used published data for H1-hES, K562, and
GM12878 cells (Li et al. 2019). These DFPs were based on DNase-
seq data, computed using HINT, and validated by the copresence
of ChIP-seq peaks for the associated TFs. The true TF labels per foot-
print were provided by the Costa laboratory, and we used them
without further postprocessing.
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For the RNA-seq files, we collected all the ENCODE-DREAM
data sets specific to the 12 benchmarking cell lines in TPM format
and converted their Gene IDs to gene symbols via GENCODE v19
annotations; they were used without further postprocessing.

See also Supplemental Methods (Public Data Used in this
Study and Data Preprocessing) and Supplemental Code.

Motif enrichment

AUROC

Motif enrichment was evaluated by AUROC for the presence of a
motif in a foreground set of DNA sequences (e.g., DNase-seq peaks)
compared with a background set. Similarly to our previously de-
scribed method (Mariani et al. 2017), we calculated the AUROC
by using the Glossary-GENRE suite with motif representations
from both PWMs (Supplemental Table S1.4) and k-mer modules
from a published glossary based on PBM data.

AME

We used AME fromMEME suite version 5.0.3 (McLeay and Bailey
2010) and the PWMrepresentationof the 13 benchmarkingmotifs
(Supplemental Table S1.4) converted to MEME format. We re-
quested an ‐‐evalue-report-threshold of 20 to ensure all motifs
were reported. We used as background both the default dinucleo-
tide shuffled sequences (Supplemental Fig. S5A) or the ENCODE-
DREAM pairwise subtraction peak sets through the ‐‐control argu-
ment (Supplemental Fig. S5C).

HOMER

We used the program findMotifsGenome.pl from HOMER 4.10.3
(Heinz et al. 2010) and the PWM representations of the 13 bench-
markingmotifs to analyze the sequences of the top 500 peaks from
the benchmarking ENCODEDNase-seq data sets used in Figure 1A
(Supplemental Fig. S5B).

coTRaCTE

coTRaCTE scripts were downloaded fromGitHub at https://github
.molgen.mpg.de/Alena/coTRaCTE. BAM files corresponding to the
benchmarking ENCODE DNase-seq peaks used in Figure 1A were
downloaded from ENCODE (Supplemental Table S1.1). We adapt-
ed the coTRaCTE 200-bp window file to 150 bp for consistency
with Figure 1A; read coverage for each BAM file was calculated
over these windows using BEDOPS (Neph et al. 2012a) “bam2bed”
and “bedmap.” We then used coTRaCTE to (1) determine cell-
type-specific and ubiquitous accessible regions, (2) calculate affin-
ity measurements for those sets of sequences with 13 benchmark
PWMs (in JASPAR format), (3) evaluate the enrichment of a motif
in cell-type-specific versus ubiquitous accessible regions, and
(4) use the Benjamini–Hochberg method to correct those P-values
for multiple hypothesis testing.

For HOMER, AME, and coTRaCTE, the −log10 (P-values) were nor-
malized to the maximum value for display purposes.

For more details on these methods, see Motif Enrichment
Analysis in the Supplemental Methods and Supplemental Code.

MEDEA suite

MEDEA filtering

As our DNase-seq reference set, we used relaxed peaks curated by
the ENCODE-DREAM Challenge (Supplemental Table S1.1). To
pairwise subtract the accessibility peaks of each reference data set

from the 12 benchmarking data sets, we used the command
subtractBed with the -A option, which furnished the most cell-
type-specific peaks of the input sets. Because we did not subtract
out the same cell type, each benchmarking data set resulted in a se-
ries of 11 MEDEA-filtered peak subsets (Supplemental Fig. S4),
which we sorted by signal value to filter for the top 500 peaks for
the subsequent MEDEA AUROC analysis. See also MEDEA
Filtering: Step 1 of theMEDEA suite in the SupplementalMethods.

MEDEA AUROC

To calculate the motif enrichment statistics of each pairwise com-
parison between the input data set and the reference sets in the top
500MEDEA-filtered peaks, MEDEA uses the Glossary-GENRE suite
to compute AUROC values, which it aggregates by taking the me-
dian (i.e., MEDEA AUROC). The use of the median ensures robust-
ness to outlier values coming from cell types that may be too
similar to a cell types in the reference set (Supplemental Fig. S4).
See alsoMotif Enrichment Analysis in the Supplemental Methods.

MEDEA thresholding, high and low pools

To determine the high pools of MEDEA values, we organized the
AUROC values from Supplemental Table S3.1 by a TF specificity
model (e.g., Fig. 4B). For each model, we computed a threshold
for the MEDEA AUROC values through the following iterative
steps: (1) evaluation of the MEDEA AUROC median values, (2)
quantification of the deviation between the AUROC distribution
for the DNase-seq peaks (x-axis in Fig. 4B) and for the MEDEA-fil-
tered peaks (y-axis in Fig. 4B), and (3) setting of a Preliminary
MEDEA Threshold at three deviations above the median. We used
the Preliminary Threshold to create preliminary high and low pools
of cell types (i.e., the preliminary “low pool” contains cell types
with MEDEA AUROC values below the Preliminary MEDEA
Threshold). We ensured convergence of the method by reiterating
the steps (1–3) on the preliminary “low pool” until the difference
between two consecutive Preliminary MEDEA Thresholds was less
than 0.005. The final PreliminaryMEDEAThreshold defined the val-
ue of the MEDEA Threshold collected in Supplemental Table S3.2,
as well as the high pool collected in Supplemental Table S3.3.
See also Analysis of 610 ENCODE DNase-seq Data Sets with
MEDEA in the Supplemental Methods and Supplemental Code.

Analysis of TF up-regulation

For each gene in each cell line, transcripts permillion (TPM) values
were averaged between replicates, and the resultingmean TPMval-
ues were used for ranking the genome (TPM Rank in y-axis of
Supplemental Fig. S2). Moreover, we assigned to each gene the
fold-change between the TPM Rank in that cell type over themedi-
an TPMRank in the other 11 cell types (TPMRank Fold-Change in x-
axis of Supplemental Fig. S2). For the 13 benchmarking TF fami-
lies, we compiled a corresponding list of member TFs. For each
TF family in each cell type, we selected the TF member with the
highest TPM Rank Fold-Change to represent its family (Fig. 1B,
red points for values above two, see Supplemental Fig. S2). See
also RNA-seq Transcript Analysis in the Supplemental Methods.

DNase-seq and MEDEA peak overlap analysis with ChIP-seq

and DFP data

For each ChIP-seq or DFP data set, we collected the top 500 unfil-
tered DNase-seq peaks (as in Fig. 1A) and the series of top 500
MEDEA-filtered peaks (as in Supplemental Fig. S4) in the corre-
sponding cell line and used the BEDTools command
“intersectBed” (Quinlan 2014) to measure the percentage of peaks
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that overlapped with some element of the data set (Fig. 3;
Supplemental Fig. S8). For H3K27ac and H3K4me1 ChIP-seq data
sets, we ensured the presence of both histone marks by using the
intersectBed’s option for two -b data sets (one per histone mark).
For each MEDEA series, we obtained 11 overlap percentages. For
ChIP-seq data, we represented each series as mean and standard
deviation (Fig. 3; Supplemental Fig. S8) and bootstrapped its values
to evaluate whether it differed significantly from the percentage
obtained by using unfiltered DNase-seq peaks. For DFPs, we quan-
tified the log2 fold-change of their overlap in theMEDEA series ver-
sus unfiltered DNase-seq peaks. To avoid large fluctuations owing
to low values of DFP overlap with peaks, we added a pseudocount
of 10 peaks to both terms. See also DNase-seq and MEDEA Peak
Overlap Analysis with ChIP-seq and DFP data in the
Supplemental Methods and Supplemental Code.

Clustering analysis

We merged all the high pools obtained by applying the MEDEA
thresholds (Supplemental Table S3.2) to the MEDEA AUROC
data from Supplemental Table S3.1 (Supplemental Table S3.3).
For the low pools, we adjusted all the MEDEA AUROC values to
the same “nonenrichment” value of 0.3 and eliminated 29 specif-
icity models and one cell type (“uterus”) that were entirely con-
tained in the low pool. By combining the high pools and the
adjusted low pools, we obtained a 2D distribution of adjusted
MEDEA AUROC values for 177 specificity models and 187 cell
types. We independently clustered this distribution by specifi-
city models (Supplemental Fig. S14, columns) and cell types
(Supplemental Fig. S14, rows) by using Pearson’s correlations as
distance and hierarchical agglomerative complete-linkage as or-
dering method (“hclust” function in R) (R Core Team 2018). See
also Supplemental Code.

Software availability

The scripts developed to implement analyses described here are
provided as Supplemental Code. MEDEA software can be found
on the Bulyk laboratory GitHub website (https://github.com/
BulykLab/MEDEA). We have integrated MEDEA into our publicly
available Glossary-GENRE suite for motif enrichment analysis
(Mariani et al. 2017). MEDEA can be run either by using the
ENCODE-DREAM DNase-seq data as the included default refer-
ence panel or by providing user-defined reference data sets.
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