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Abstract. Our group has recently developed a compact, universal protein 

binding microarray (PBM) that can be used to determine the binding 

preferences of transcription factors (TFs) [1].  This design represents all 

possible sequence variants of a given length k (i.e., all k-mers) on a single array, 

allowing a complete characterization of the binding specificities of a given TF.  

Here, we present the mathematical foundations of this design based on de 

Bruijn sequences generated by linear feedback shift registers.  We show that 

these sequences represent the maximum number of variants for any given set of 

array dimensions (i.e., number of spots and spot lengths), while also exhibiting 

desirable pseudo-randomness properties.  Moreover, de Bruijn sequences can 

be selected that represent gapped sequence patterns, further increasing the 

coverage of the array.  This design yields a powerful experimental platform that 

allows the binding preferences of TFs to be determined with unprecedented 

resolution.  

Keywords: de Bruijn sequences, linear feedback shift registers, protein binding 

microarrays, motif, transcription factor. 

1   Introduction 

Detailed knowledge of the DNA binding specificities of TFs is crucial for both 

genomic studies attempting to map TFs to their target genes [2], as well as 

biophysical investigations of protein-DNA interactions [3].  Despite the importance of 

this data type, the binding preferences of the vast majority of TFs remain unknown, 

largely due to a historical lack of suitable experimental technologies.  While 

chromatin immunoprecipitation (ChIP) experiments [4] (and, more recently, ChIP-

chip experiments [5]) give specific examples of sequences bound by a TF in vivo, 

they do not provide an exhaustive characterization of the sequences that a TF can and 

(just as importantly) cannot bind.  Similarly, approaches such as in vitro selection [6] 



typically identify only a limited number of high-affinity binding sites, making a direct 

quantification of relative binding preferences difficult. 

To address this challenge, our group has developed the protein binding microarray 

(PBM) technology for high-throughput characterization of the in vitro binding 

specificities of protein-DNA interactions [1,7,8]. Briefly, a DNA-binding protein of 

interest is expressed with an epitope tag, then purified and applied to a double-

stranded DNA microarray. The washed, protein-bound microarray is labeled with a 

fluorophore-conjugated anti-GST antibody. By scanning the array, quantitative 

information is generated regarding the preferences of the TF for each of the sequences 

on the array.  Prior work by our group and others has demonstrated that this is an 

effective technology that allows rapid and high-quality determination of the DNA 

binding specificities of TFs [1,7-10].   

A limitation of previous PBM studies, however, has been the lack of a universal 

array that can be used for the majority of TFs, regardless of their structural class or 

genome of origin. Earlier studies have utilized either microarrays containing a limited 

number of binding site variants chosen for the TF under consideration [7,9], or large 

genomic fragments obtained from the same genome as the TF (specifically, S. 

cerevisiae) [8].  The former approach has the twofold disadvantage of requiring a new 

microarray for each additional TF assayed and also requiring some a priori 

knowledge of the DNA binding specificities of the TF; the latter approach suffers 

from the limitation that longer sequences can contain several binding sites for a given 

TF, making it difficult to acquire quantitative information on protein-DNA 

interactions.  Thus, a single microarray is desired that represents all possible binding 

sites of a given width k (i.e., all k-mers), in order to provide a complete survey of all 

candidate binding sites. 

Our group has recently developed such a universal array [1].  The key to our design 

is two-fold.  First, we have selected our double-stranded DNA probes to have a length 

(L) significantly longer than the motif widths (k) that we intend to inspect, so that 

each spot contains L-k+1 potential binding sites of width k. For a microarray 

composed of N spots, this increases the total number of k-mers represented from N (in 

the naïve construction where there is one k-mer per spot, as has been previously 

utilized [10]) to N(L-k+1). Second, we have designed these spots to completely cover 

all k-mer sequence variants, so that a maximal number of distinct k-mers are 

represented. Consider the circular sequence shown in Fig. 1A that contains all 16 2-

mer variants exactly once. Such sequences containing all 4
k
 overlapping k-mers one 

time are named de Bruijn sequences [11,12] of order k, and the spots of our universal 

array are obtained by computationally segmenting appropriately chosen de Bruijn 

sequences, leaving an overlap between adjacent sequences in order to not omit any k-

mers.  With this design, we are able to represent a maximal number of sequence 

variants in a minimum amount of sequence. 

The implementation of this design, along with generated data for five TFs, has been 

presented in the work of Berger et al [1].  Here, we give an exposition of the 

underlying combinatorial and algebraic theory utilized in designing the array.  

Specifically, we provide a mathematical treatment of 1) the motivation for and 

utilization of linear feedback shift registers (LFSRs) to generate de Bruijn sequences; 

2) theoretical developments made by our group in order to design de Bruijn sequences 

that not only contain contiguous k-mers, but also k-mers with biologically relevant 



gaps; 3) methods for selecting de Bruijn sequences that are optimized for determining 

TF binding site motifs that are wider than the order of the utilized de Bruijn sequence; 

4) the utilization of complementary, independently generated de Bruijn sequences for 

use in replicate PBM experiments.  Finally, we note that de Bruijn sequences have 

previously been utilized in cryptography [13,14], random number generation [13,14] 

and the design of tags for DNA microarrays [15].  Recently, another group has 

independently suggested the use of de Bruijn sequences for use in PBM experiments, 

although that work did not consider the coverage of gapped k-mers and did not utilize 

LFSRs [16]. We hope that this work will be useful to individuals either seeking to 

design sequences for PBM experiments or analyzing data generated by a PBM 

utilizing de Bruijn sequences.  Additionally, we hope that the mathematical methods 

developed for this application will lead to other, un-anticipated biological 

applications. 

 

 

 
Fig. 1.  De Bruijn sequence of order 2 (A) and its associated de Bruijn graph (B). 

2   Results 

2.1   LFSRs and the Generation of de Bruijn Sequences  

For any alphabet Σ of size |Σ| and any word length k, there exist sequences 

( )
121 ...

−+Σ
=

k
ksssS  that are circular (i.e., 1111

..... −−+Σ+Σ
= kk

ssss kk ) and of length 

|Σ|
k
 containing all k-mers exactly once when words are considered in a stacked 

fashion. Such sequences are known as de Bruijn sequences of order k, and their 

existence can be confirmed by considering the directed graph whose vertices are all k-

1-mers and whose edges are all k-mers, where two vertices are connected by an edge 

if the last k-2 letters of the first vertex are identical to the first k-2 letters of the 

second.  Fig. 1B gives an example of such a graph (often referred to as a “de Bruijn 



graph” [12]), and we note that graphs of this form have previously been applied to the 

analysis of repetitive DNA [17] and sequence alignment [18].  Observe that a de 

Bruijn sequence is equivalent to a walk on this directed graph that traverses every 

edge (i.e., an Eulerian tour [12]). Since the number of edges going into each vertex is 

equal to the number of edges that exit it, Euler’s theorem guarantees that such paths 

exist [12].  Indeed, for a given choice of |Σ| and k, the number of paths is 
( )

k

k

Σ

Σ
−

Σ
1

!
 

[12]; for example, for |Σ|=4 (i.e., the DNA alphabet) and k=9, the number of de Bruijn 

sequences is greater than 10
90,000

.  

De Bruijn sequences contain a maximum density of sequence variants, as they 

contain all distinct k-mers within a sequence of minimum length.  Moreover, for any 

m>k the |Σ|
k
 sequences of length m represented in the de Bruijn sequence will all be 

distinct; thus, although not all m-mers are represented on an order k de Bruijn 

sequence, as many distinct m-mers as possible are represented within the given 

sequence length. Similarly, for all m’< k, each m’-mer is represented exactly 
'mk−

Σ  

times, insuring that the sampling of m’-mers is uniform.  

Clearly, the regularity and variability of de Bruijn sequences makes them a 

promising tool for designing a universal PBM. An especially facile method of 

generating such sequences when |Σ| = p
n
, for p a prime and n any integer, is through 

the use of linear feedback shift registers (LFSRs) [13,14]. As background, recall that 

a Galois field GF(p
n
) is a set containing p

n
 elements that is closed over the 

multiplication and addition {×, +} operations (one can show that such operations can 

be suitably defined if and only if the field contains a prime power of elements [19]).  

For example, Fig. 2 gives multiplication and addition tables over GF(4) = {0, 1, α, 

α+1}  

 

 

x 0 1 α α+1

0 0 0 0

0 1 α α+1

0 α α+1 1

0 α +1 1 α

0

1

α

α+1

+ 0 1 α α+1

0 1 α α+1

1 0 α+1 α

α α+1 0 1

α+1 α 1 0

0

1

α

α+1

 
Fig. 2.  Addition and multiplication tables over GF(4) 

 

 

In order to construct a de Bruijn sequence of order k over the alphabet Σ, take an 

arbitrary embedding of the alphabet into GF(|Σ|), and consider the following recursive 

linear equation for generating the i’th element of a sequence ( )
121 ...

−+Σ
=

kksssS  



from the previous k elements, where arithmetic is performed over GF(|Σ|): 

 

kiikiki ssss −−−−− +++= 02211 ... θθθ  . (1)

 

If the coefficients θi∈GF(|Σ|) are chosen so that the polynomial ∑
−

=

1

0

k

i

i

i xθ is primitive 

[19], one can demonstrate [14] that the sequence S generated by this recursive 

equation has periodicity |Σ|
k
-1 and contains every k-mer in GF(|Σ|) except the 

sequence of k consecutive 0’s (this word can be easily included to make S a true de 

Bruijn sequence by inserting an additional 0 into any of the subsequences of k-1 0’s 

appearing in S). Moreover, S will exhibit the following three properties characteristic 

of pseudo-random sequences [13,14]: 

 

1) Balance: The number of occurrences in S of each letter differs by no more 

than 1 

2) Low autocorrelation: There is low correlation between pairs of letters 

separated by a distance j, for any j.  

3) Proportional runs: The number of j consecutive occurrences of the same 

letter ω is n
k-j

 if ω≠0 and n
k-j

-1 if ω=0. 

 

Thus, de Bruijn sequences generated by LFSRs resemble random sequence, an 

advantageous property as it guarantees that any trends observed in the data are not an 

artifact of the method of sequence generation. Moreover, unlike random sequence, 

LFSRs represent a maximal number of sequence variants (a truly random sequence of 

equivalent length would represent only 1-e
-1

 ≈ 63% of k-mers on average [1]). Since 

the DNA alphabet contains a prime power of elements (4=2
2
), LFSRs are available 

for use in generating de Bruijn sequences.  Indeed, there are (at least) two approaches 

for using LFSRs to generate de Bruijn sequences over the DNA alphabet. In the first 

and more natural approach, one takes an arbitrary embedding of {a, c, g, t} into GF(4) 

= {0, 1, α, α+1} where α2
=α+1, and one then picks a primitive polynomial of degree 

k over GF(4) to use as a LFSR generating a sequence of length 4
k
-1. This is 

schematized in Fig. 2A, using the embedding {a↔0, c↔1, g↔α, t↔α+1} (again, 

under this embedding the generated sequences do not contain the sequence of k 

consecutive a’s). Alternatively, one can pick a polynomial of degree 2k over 

GF(2)={0,1} and use it to generate a sequence of length 2
2k

-1 over the 0-1 alphabet. 

Here, one associates each element of the DNA alphabet with a pair of elements in 

GF(2), and one must traverse this sequence over GF(2) twice, considering both 

reading frames. This is schematized in Fig. 2B, where we have used the embedding 

{a↔00, c↔10, g↔01, t↔11}. Henceforth, we shall refer to the embeddings {a↔0, 

c↔1, g↔α, t↔α+1} and {a↔00, c↔10, g↔01, t↔11} of the DNA alphabet into 

GF(4) and GF(2), respectively, as the standard embeddings (note that both methods 

of utilizing LFSRs to generate de Bruijn sequences can be generalized to arbitrary 

number fields with a prime power of elements).  In the next section, we show that de 

Bruijn sequences generated by primitive polynomials over GF(2) and GF(4) actually 

behave differently with respect to the coverage of gapped k-mers. 



 

 
Fig. 3. Generation of de Bruijn sequences over (A) 4-letter and (B) 2-letter alphabets. 

 

 

Our basic design, then, is to utilize LFSRs to generate de Bruijn sequences of order 

k, where k is as large as possible for a given set of array dimensions and spot lengths. 

The generated de Bruijn sequence is then computationally segmented into shorter 

sequences of length l corresponding to spots on the array, leaving an overlap of k-1 

letters between adjacent spots so as not to omit any k-mers. For example, consider an 

array composed of spots of length 30; then all 9-mers could be represented using 

fewer than 12,000 spots, well within the range of current array dimensions. Such an 

array would also contain nearly 1/4 of all 10-mers, 1/16 of all 11-mers, etc., and thus 

could be expected to yield substantial information about TFs having motif widths 

greater than 9.  

2.2   LFSRs and the Coverage of Spaced Seeds 

In Berger et al [1], we performed a survey of known TFBS motifs in order to 

determine what value of k is required in order to design an array suitable for most 

TFs.  There, we observed that a majority of motifs contained <=9 informative 

positions. We also observed, however, that for nearly 25% of motifs, the pattern of 

informative positions was not contiguous and contained one or more gaps (i.e., 

positions with ≤0.3 bits of information when using the standard position-weight-

matrix representation [20]). While de Bruijn sequences of order k will, by definition, 

contain all contiguous k-mers, they do not necessarily contain all gapped k-mers. 

Therefore, we inspected the representation of gapped k-mers in de Bruijn sequences. 

We define a seed to be the set of all possible words over the DNA alphabet with a 

given (possibly gapped) pattern of positions, and we represent the seed with a 0-1 

string where 1’s are placed at the informative positions. For example, the seed “11” 

corresponds to the set {aa, ac, …, tg,tt} that contains all contiguous 2-mers, and the 

seed “1001” corresponds to the set {a(2)a, a(2)c, …, t(2)g, t(2)t} where the numbers 



in parentheses denote the gap size. Words with gaps will be said to be elements of 

spaced seeds, and those without gaps will be said to be elements of contiguous seeds. 

We shall use the variable ζ to represent an arbitrary seed and, for a seed ζ containing 

k informative positions, we say the order of ζ is k. Finally, a given LFSR L is said to 

cover a seed ζ if all its elements except the string composed of all a’s (e.g., aa and 

a(2)a for the order 2 seeds 11 and 1001, respectively) appear in the sequence 

generated by L (the reasons for ignoring the elements composed of only the letter a 

will be explained shortly). Similarly, we shall refer to the coverage of ζ by L with the 

variable χ(L, ζ), which takes the value of 1 if the seed ζ is covered by the LFSR and 0 

otherwise (again ignoring the element composed of only the letter a). 

For a given sequence S over {a, c, g, t}, let Ak,S denote the set of all (potentially 

gapped) subsequences of k a’s that occur in S; for example, in the sequence shown in 

Fig. 2A A2,S = {a(4)a, a(9)a}, and in Fig. 2B A2,S = {a(1)a, a(5)a, a(6)a, a(7)a, a(8)a, 

a(12)a}. For ζ a seed of order k and S a sequence generated by a LFSR over GF(q), 

where q equals either 2 or 4, one can demonstrate the following facts concerning the 

coverage of spaced seeds by LFSRs.  

 

Proposition 1: a) Under the standard embeddings of the DNA alphabet, ζ is 

covered by S if and only if Ak,S∩ζ=∅. b) There exists a j∈Ν such that every 

element of ζ not in Ak,S occurs either 0 times or exactly q
j
 times in S.  Also, the 

element of A k,S in ζ occurs q
j
-1 times. 

Proof:  Consider the case where q=4.  Because our sequence S = (s1s2s3…) is 

generated by a LFSR, we know that for any i 

 

kiikiki ssss −−−−− +++= 02211 ... θθθ  . (2)

 

Given values of i and m where m≥k, let  ( )mis ,  denote the subsequence in S of m 

letters beginning at the letter si; also, let this same notation denote the vector of 

dimension m over GF(q) ( )mis ,  = (si+m-1, si+m-2,…,si). Consider the matrix 























=

−−−

01000

00010

00001

01321

L

MMOMMM

L

L

L θθθθθ kkk

A  

It is clear that for any i, ( ) ( )kiki sAs ,,1 =+  and, by induction, for any j≥0  

( ) ( )ki

j

kji sAs ,, =+ .  Also, observe that for any m ≥ k, ( )mis ,  can be constructed 

from ( )kis ,  by applying the m×k matrix 

 



( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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−
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as ( ) ( )( )
kimi smAs ,,

~
=  (note that in ( )mA

~
, the entries ( ) ji

nA ,
 refer to the matrix 

element in row i and column j in the n’th power of A).  Consider a seed ζ having 

width m and containing k informative positions.  Let ( )kmA ,
~

 be the k×k sub-

matrix of ( )mA
~

 when restricting to only those rows corresponding to the 

informative positions of ζ.  Consider the set ( ){ }141),(
~

, −<≤ k

ki iskmA  (i.e., the set 

of elements of ζ that occur in S).  ),(
~

kmA is either invertible or it is not.  If 

),(
~

kmA is invertible, then its image is all 4
k
 elements of ζ, and every element of 

the seed occurs in the LFSR with the exception of the sequence that contains a 0 

(equivalently, an “a” under the standard embedding) at every informative 

position, as the kernel of ),(
~

kmA  is trivial. Thus, ζ will be covered if the 

sequence with a’s at the informative positions of the spaced seed (which is an 

element of Ak,S) does not appear in S.  Similarly, this argument is reversible and 

so the converse holds; thus, Prop. 1a is proven.  If ),(
~

kmA is not invertible, then 

its kernel will contain 4
j
 elements for j∈Ν, its image will contain 4

k-j
 elements, 

and each of these elements will be the image of 4
j
 vectors ( )kis , .  Since every 

contiguous k-mer ( )kis ,  except the sequence of k consecutive a’s occurs in S, 

Prop. 1b holds and the proof is completed for the case q=4.  The proof for q=2 is 

nearly identical.  Now, however, our matrix A will have dimension 2k×2k.  Note 

that here, the kernel for the matrix analogous to ),(
~

kmA will contain 2
j
 elements 

for some j. 

 

Thus, the spaced seeds that are missed correspond exactly to gapped patterns of a’s 

occurring within the LFSR and, for any spaced seed, the fraction of elements that are 

represented will be approximately either 2
-j
 when using a polynomial over GF(2), or 

4
-j
 when using a polynomial over GF(4). We inspected the coverage of seeds most 

likely to correspond to known motifs for LFSRs over GF(2) and GF(4), in order to see 

if some polynomials empirically provided better coverage than others. Here, it is 

known that the number of primitive polynomials of degree k over a field with q 



elements is given by the formula ( )
k

qk 1−φ  where φ is Euler’s totient function [21] that 

returns the number of integers relatively prime to the input value [14,19]; also it is 

easily seen that the number of spaced seeds of width up to m and order k is given by 

the formula ∑
=










−

−m

ki k

i

2

2 .  

Because we could not see how to determine Ak,S (and thus the set of covered seeds) 

for a given LFSR other than by explicit computation, we focused our analysis on the 

7776 polynomials over GF(2) of order 18 and the 15,552 polynomials over GF(4) of 

order 9. For each of the de Bruijn sequences generated by these polynomials, we 

inspected whether each of the 44 seeds of widths 9≤m≤11 and order k=9 was covered. 

For a given LFSR L, let ( ) ( )∑=
ζ

ζχ ,
44

1
LLC  (i.e., the average coverage), where the 

summation is over all of the spaced seeds ζ with widths between 9 and 11. We were 

pleased to observe that, by a judicious choice of LFSR, it is possible to completely 

cover over ~86% (38/44) of these seeds when considering polynomials over GF(4) 

and ~82% (36/44) of these polynomials over GF(2).  Also, the mean coverage of 

polynomials over GF(4) was ~74±12%, significantly higher than average coverage of 

~44±12% for polynomials over GF(2).  

2.3   Sampling k-mers Larger than the Order of the de Bruijn Sequence 

In this section, we demonstrate that the representation of spaced seeds is connected to 

the uniform sampling of words longer than the order of the shift register. As stated 

previously, the fraction of m-mers represented in an order k de Bruijn sequence is 4
k-m 

(where m≥k). In this section, we demonstrate that if the sequence covers all spaced 

seeds of width ≤m and order k, then the sampled m-mers are well-spaced and 

regularly sampled (this will be made precise momentarily), facilitating interpolation 

to m-mers not represented on the array. Thus, a suitable selection of de Bruijn 

sequence to cover spaced seeds is valuable to determining TFBSs whose width is 

greater than the order of the generating de Bruijn sequence.   

Let d be the Hamming metric on words of length k over the DNA alphabet [21] 

(i.e., the metric that counts the number of mismatches between pairs of words).  For a 

de Bruijn sequence of order k, let m be an integer such that m>k.  We say that the 

sampling of m-mers is m,k-spaced if for each word w of width m occurring in the de 

Bruijn sequence, there does not exist a distinct word w’  in the de Bruijn sequence 

such that ( ) kmwwd −≤', .  Also, we say that the sampling of m-mers is m,k-

equidistant if 1) for any choice of k-1 positions in w there exists a w’ occurring in the 

de Bruijn sequence that agrees with w at these k-1 positions and such that 

( ) 1', +−= kmwwd , and 2) the number of words w’ appearing in the de Bruijn 

sequence such that ( ) 1', +−= kmwwd is constant over the choice of w. 

 

 



A B

 
 
Fig. 4:  Cartoon depicting all m-mers (grey vertices) and m-mers sampled by an order k<m de 

Bruijn sequence (black vertices).  Vertices are connected by an edge if they are 1 mismatch 

away.  (A) de Bruijn sequence that samples m-mers randomly.  (B) de Bruijn sequence that 

samples m-mers regularly. 

 

 

 

Intuitively, m-mers are regularly sampled if they are m,k-spaced and m,k-

equidistant.  This is cartooned by the graphs in Fig. 4, where nodes represent the 4
m
 

possible m-mers, and the black nodes represent the 4
k
 m-mers that are represented 

within a given de Bruijn sequence of order k.  In this graph, two m-mers are adjacent 

in the graph if they differ at only one position.  A randomly chosen de Bruijn 

sequence will sample a random collection of m-mers (Fig. 4A), yet an auspiciously 

chosen de Bruijn sequence (i.e., m,k-spaced and m,k-equidistant) will regularly 

sample m-mers (Fig. 4B). 

One can then prove the following two propositions regarding m,k-spacing and m,k-

equidistance.  We note that they apply to general de Bruijn sequences, and not only 

those de Bruijn sequences generated by an LFSR. 

 

Proposition 2: The sampling of m-mers is m,k-spaced in an order k de Bruijn 

sequence if and only if all spaced seeds of width m’≤m and order k are covered. 

Proof:  Assume that the de Bruijn sequence covers all spaced seeds of width m’ 

and order k.  Assume (for contradiction) that there are words w and w’ such that 

( ) kmwwd −≤', ; then w and w’ will agree at at least k letters.  Consider the 

spaced seed that contains 1’s at the positions where w and w’ agree, and let m’ be 

the distance between the first and last 1 in this spaced seed (note that m’ may be 

less than m if w and w’ do not agree at the first or last positions). Then w and w’ 

will map to the same element of this spaced seed, and so the seed cannot be 

covered by the pigeonhole principle, giving a contradiction.  Conversely, assume 

that a given de Bruijn sequence is m,k-spaced.  Let ζ be a spaced seed of width 

m’≤m and order k.   Every element of ζ that appears in the de Bruijn sequence 

must occur only once.  To see this, assume (for contradiction) that there is some 

element of ζ that occurs more than once.  Then there are m-mers w and w’ 

appearing in the de Bruijn sequence that agree at the k informative positions of 

the spaced seed.  Then ( ) kmwwd −≤',
~

, in violation of our assumption that the 



sampling of m-mers is m,k-spaced. Thus, ζ must be covered since the number of 

its elements that occur in the de Bruijn sequence is 4
k
, all of which are distinct.  

 

Proposition 3: If the sampling of m-mers is m’,k-spaced for all k≤m’≤m, it is 

m,k- equidistant. 

Proof:  For any m’≤m, we know that all spaced seeds of width m’ and order k are 

covered, by Prop. 2. Let w be an m-mer and pick any k-1 informative positions in 

w. Since all spaced seeds of width m’≤ m and order k are covered, there will be 

exactly three distinct m-mers w’ such that w’≠w and that occur in the de Bruijn 

sequence and agree with w at these k-1 informative positions (call this set W).  

The elements of W will all be at a distance of ( ) 1',
~

+−= kmwwd  (so condition 1 

is satisfied).  Also, take a different choice of k-1 informative positions in w, and 

consider the set of three words W’ agreeing with w at these k-1 informative 

positions.  W and W’ must be disjoint, since if there is a word in common 

between them, then it would agree with w at at least k informative positions, and 

then the de Bruijn sequence could not cover all spaced seeds of width m’≤ m and 

order k.  This implies that every element has a constant number of m-mers at a 

distance of m-k+1, and so condition 2 holds.  

 

Finally, for the special case of m=k+1, one can state the following proposition 

giving analytic conditions relating m,k-spacing and m,k-equidistance to the choice of 

polynomial used for the LFSR: 

 

Proposition 4: a) A de Bruijn sequence of order k generated by a LFSR over 

GF(4) is k+1,k-spaced and k+1,k-equidistant if and only if none of the 

coefficients θi of the generating polynomial ∑
−

=

1

0

k

i

i

i xθ  are equal to 0. b) A de 

Bruijn sequence of order k generated by a LFSR over GF(2) is k+1,k-spaced 

and k+1,k-equidistant if and only if it does not contain three consecutive 

coefficients (θi, θi+1, θi+2) for even i such that 02

12 =+ ++ iii θθθ . 

Proof: Assume the case where the de Bruijn sequence is generated by the 

polynomial ∑
−

=

1

0

k

i

i

i xθ over GF(4).  By Props. 2 and 3 it is sufficient to prove 

that all seeds of width k+1 and order k are covered if and only if all θi are non-

zero.  Coverage of order k width k+1 seeds is equivalent to asserting that for 

any k+1-mer (s1,…sk+1) and any 1≤i≤k, there exists a value is~  such that  

∑ ∑
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1

0

1

1
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i

j

k

k

ij

jjiijj ssss θθθ .  Clearly, this can occur if and only if for all i 

0≠iθ .  The proof for polynomials over GF(2) is nearly identical, but involves 

solving two such equations simultaneously.  



2.4   Complementary de Bruijn Sequences and Replicate Experiments 

An additional advantage of our design is that, for any given value of k and desired set 

of represented gapped k-mers, if one acceptable de Bruijn sequence exists, there will 

in general be several that could be used (this is easily seen by, for example, permuting 

the letters or taking the reversal of the de Bruijn sequence).  In Berger et al [1], we 

exploited this fact by doing replicate experiments on distinct de Bruijn sequences, 

both of which were 11,10-spaced and 11,10-equidistant (i.e., they covered all 10-mers 

containing a single gapped position).  There, we observed that performing replicate 

experiments on distinct de Bruijn sequences, rather than the same de Bruijn sequence, 

improved our ability to correctly quantify the binding preferences of the well-

characterized TF Zif268.  We anticipate that this approach of performing replicate 

experiments on distinct de Bruijn sequences will be a valuable means for improving 

PBM experiments.  In this section, we inspect some formal aspects of this 

experimental strategy.  

The following proposition implies that all pairs of order k de Bruijn sequences 

generated by LFSRs will share a constant number of k+1-mers.   

Proposition 5:  Let S and S’ be two de Bruijn sequences of order k, both 

generated by an LFSR over either GF(2) or GF(4).  Then exactly 4
k-1

 k+1-

mers will be commonly represented on both S and S’. 

Proof: Assume that S and S’ are generated by the polynomials ∑
−
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1

0

k

i

i

i xθ and 

∑
−
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1

0

'
k

i

i

i xθ , respectively, over GF(4).  Then S and S’ will share a k+1-mer 

(si+k+1,…si) if and only if 0
~

,'
~

,'
~

, =Θ−Θ⇔Θ=Θ SSS , where Θ=(θk-

1,...,θ0), Θ’=(θ’k-1,...,θ’0) and ( )iki ssS ,...,
~

+= .  Since the null space of a linear 

form must always be of dimension k-1, there will be exactly 4
k-1

 values that 

satisfy this equation.  The proof for GF(2) is nearly identical, but involves 

finding the null space for two linear forms simultaneously.    

 

Thus, it is not in general possible to optimize the coverage of words longer than the 

order of the de Bruijn sequences in performing replicate experiments, as the number 

of k+1-mers represented on at least one of the two de Bruijn sequences will always be 

2*4
k
-4

k-1
.  Note that Prop. 5 also answers a natural question regarding the selection of 

the optimal order (k) to use for a given set of array dimensions (either on a single 

array or multiple arrays).  It is not immediately clear whether it is better to have 4 

different de Bruijn sequences of order 4
k-1

 or one de Bruijn sequence of order 4
k
, as 

each requires an equal number of spots of the same length.  Prop. 5 implies that a de 

Bruijn sequence of order 4
k
 is preferable, as de Bruijn sequences of order 4

k-1
 will 

have overlap with respect to the k-mers that they represent. 

Finally, we note that, although it does not seem that complementary order k 

primitive polynomials can be utilized in order to maximize the coverage of m-mers, 

m>k, we have observed that suitable sets of complementary polynomials can be 

selected for the coverage of gapped k-mers.  Here, we have found by empirical 



inspection that if one polynomial misses a given spaced seed, then another polynomial 

can be identified that covers it.  Thus, this parameter can be optimized. 

2.5   Open Questions 

We see (at least) three broad areas in which further mathematical/algorithmic efforts 

could lead to improvements in array design.  First, assuming the use of LFSRs for 

generating de Bruijn sequences, there is need for an improved mathematical theory 

relating the coverage of spaced seeds to the generating polynomial.  In this work, we 

have presented an explicit formula for determining whether a given polynomial 

represents all k-mers with a single gapped position (i.e., k+1,k-spaced and k+1,k-

equidistant de Bruijn sequences), but we have not yet been able to extend this theory 

to k-mers with multiple gaps. 

Second, only a small fraction of de Bruijn sequences correspond to sequences 

generated by an LFSR, and the utility of such non-LFSR-generated de Bruijn 

sequences remains largely unexplored.  In current applications we have utilized 

LFSRs as they provably satisfy pseudo-randomness properties that are advantageous, 

since they guarantee that there are no confounding correlations in the experimental 

data that are an artifact of the methods utilized to generate the de Bruijn sequences.  

Additionally, LFSRs allow for the complete coverage of certain gapped k-mer 

patterns, which we have observed to be useful for determination of the binding 

specificities of TFs.  However, it may well be the case that there are additional 

families of de Bruijn sequences that cover even more gapped k-mers while still 

resembling random sequence.  Similarly, there may be additional desirable properties 

of de Bruin sequences that we have not yet considered, and for which LFSRs might 

not be optimal. 

Finally, when considering protein-DNA interactions, it is often a reasonable 

assumption to identify k-mers and their reverse complements, as this symmetry is 

present in double-stranded DNA.  In the case of PBM experiments in particular, this 

is a reasonable assumption to make if the DNAs are randomly fixed to the slide 

(although it is debatable whether or not this is appropriate in the case of end-attached 

DNA, as was the case for the arrays utilized in Berger et al [1]). The work presented 

here could be extended to generate de Bruijn sequences modulo reverse complements 

(i.e., sequences where only the word or its reverse complement is present, but not 

both) as was done in a related work [16].  If such sequences could be generated that 

had the desired pseudo-randomness properties as well as coverage of gapped k-mers, 

then their utilization might be advantageous. 

3   Concluding Remarks 

We have presented the combinatorial design of a protein binding microarray.  

Importantly, this design has been optimized in several key aspects: 1) All k-mers are 

represented in a minimum amount of sequence, permitting a maximum number of 

binding site variants to be represented in a cost-efficient manner.  This allows the 

binding specificities of TFs to be assayed with word-by-word resolution.  2) The 



unbiased nature of the construction provides a design that can be used for TFs from 

any species and/or structural class, making it a universal platform. 3) Our design is 

flexible, allowing ever greater binding site coverage as array technology improves 

and feature density increases. For example, all 11-mers can already be represented 

with Agilent arrays [1], and all 12-mers with NimbleGen technology [22]; moreover, 

this number is expected to grow quickly.  Similarly, our design allows replicate 

experiments to be performed with distinct de Bruijn sequences, resulting in reduced 

experimental noise and greater coverage of sequence space.  4) We have utilized de 

Bruijn sequences generated by LFSRs which provably resemble random sequence.  

This guarantees that any statistical trends observed in data generated by a PBM 

experiment are not an artifact of how the sequences were constructed.  5) Our design 

not only maximizes the coverage of contiguous k-mers, but also gapped k-mers.  This 

simultaneously allows an interrogation of the binding specificities of TFs with gapped 

motifs and also improves the ability of the design to approximate the binding 

specificities of TFs whose width is greater than the order of the de Bruijn sequence. 

Indeed, our group has already implemented this design and applied it to determine 

the binding specificities of five TFs from different organisms and structural classes 

with an unprecedented level of resolution [1].  There, we demonstrated that this 

platform could be used to assay the binding preferences of individual binding site 

variants, allowing us to identify at least one case of positional interdependence in a 

binding site motif.  Similarly, we were able to approximate a binding site motif that 

was 12 bases in length using a de Bruijn sequence of order 10, attesting to the 

advantages of a careful and thorough coverage of gapped k-mers (point 5 above).  Our 

group is now using this technology to determine the binding specificities of many TFs 

from a range of organisms, providing a much needed data type for the biological 

community. Thus, this microarray design provides a powerful, general and robust 

platform, and its implementation provides an experimental tool that will allow 

effective determination of TF binding site specificities both now and in the future. 
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