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Trans-omics analysis of insulin action reveals
a cell growth subnetwork which
co-regulates anabolic processes

Akira Terakawa,1,15 Yanhui Hu,2,3,15 Toshiya Kokaji,1,4 Katsuyuki Yugi,1,5,6 Keigo Morita,1 Satoshi Ohno,1,7

Yifei Pan,8 Yunfan Bai,8 Andrey A. Parkhitko,2,9 Xiaochun Ni,2,10 John M. Asara,11,12 Martha L. Bulyk,10,13

Norbert Perrimon,2,14,* and Shinya Kuroda1,7,8,16,*

SUMMARY

Insulin signaling promotes anabolic metabolism to regulate cell growth through
multi-omic interactions. To obtain a comprehensive view of the cellular responses
to insulin, we constructed a trans-omic network of insulin action in Drosophila
cells that involves the integration of multi-omic data sets. In this network, 14 tran-
scription factors, including Myc, coordinately upregulate the gene expression of
anabolic processes such as nucleotide synthesis, transcription, and translation,
consistent with decreases in metabolites such as nucleotide triphosphates and
proteinogenic amino acids required for transcription and translation. Next, as
cell growth is required for cell proliferation and insulin can stimulate proliferation
in a context-dependent manner, we integrated the trans-omic network with re-
sults from a CRISPR functional screen for cell proliferation. This analysis validates
the role of a Myc-mediated subnetwork that coordinates the activation of genes
involved in anabolic processes required for cell growth.

INTRODUCTION

The insulin signaling pathway regulates growth andmetabolism and is highly evolutionarily conserved from

Drosophila to mammals (Oldham and Hafen, 2003; Teleman, 2009). In both Drosophila and mammals, mu-

tations in components of the insulin pathway are associated with diabetes and growth defects (Baker and

Thummel, 2007; Oldham and Hafen, 2003; Teleman, 2009). Furthermore, dysregulation of insulin signaling

causes systemic disorders such as dyslipidemia, hypertension, cardiovascular disease, stroke, blindness,

kidney disease, female infertility, and neurodegeneration (White, 2003).

To regulate growth, insulin signaling coordinately promotes various anabolic metabolic processes such as

glycogenesis, lipid synthesis, nucleic acid synthesis, and protein synthesis (Saltiel and Kahn, 2001; Valvezan

and Manning, 2019; Zhu and Thompson, 2019). Insulin activates signaling molecules including the Akt

kinase, extracellular-signal-regulated kinase (Erk), and mechanistic target of rapamycin (mTOR) by phos-

phorylation and protein–protein interactions (PPIs), and regulates downstream transcriptional and transla-

tional events required for anabolic metabolism. This growth program requires precise co-regulation of the

number of metabolic enzymes through insulin signaling-dependent transcriptional and translational

mechanisms.

There have been many attempts to characterize the insulin-regulated network of signaling molecules, tran-

scription factors (TFs), metabolic enzymes, and other proteins regulating cellular functions such as proteins

synthesis, and metabolites. Various ‘‘omic’’ studies of insulin action have been reported focusing on the

phosphoproteome (Humphrey et al., 2013, 2015; Kawata et al., 2018, 2019; Krüger et al., 2008; Krycer

et al., 2017; Matsuzaki et al., 2021; Monetti et al., 2011; Ohno et al., 2020; Vinayagam et al., 2016; Zhang

et al., 2017), PPIs (Friedman et al., 2011; Glatter et al., 2011; Vinayagam et al., 2016), the transcriptome (Du-

pont et al., 2001; Hectors et al., 2012; Kawata et al., 2018; Kim and Lee, 2014; Matsuzaki et al., 2021; Rome

et al., 2003; Sano et al., 2016; Versteyhe et al., 2013), and the metabolome (Everman et al., 2016; Kawata

et al., 2018; Krycer et al., 2017; Matsuzaki et al., 2021; Noguchi et al., 2013; Ohno et al., 2020; Yugi et al.,

2014). To provide a more comprehensive view than what can be gained from a single type of omic data
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alone, we have previously proposed ‘‘trans-omics’’ as a discipline for constructing molecular interaction

networks from multi-omic data sets using direct molecular interactions rather than indirect statistical rela-

tionships (Yugi and Kuroda, 2017; Yugi et al., 2014, 2016). For example, in our previous studies, we con-

structed trans-omic networks responding to insulin stimulation in mammalian cells (Kawata et al., 2018; Ko-

kaji et al., 2020; Matsuzaki et al., 2021; Ohno et al., 2020; Yugi et al., 2014), and responding to glucose

administration in the liver of healthy and obese mice (Kokaji et al., 2020). Although these studies have

expanded our view of insulin signaling, functional aspects (i.e., effects on phenotypes) remain to be

explored for a large part of the network components (i.e., molecules and the regulatory relationships be-

tween them) and their relationships with phenotypes.

Insulin signaling is required for cell growth and proliferation in both Drosophila and mammals in a context-

dependent manner (Straus, 1981; Wu et al., 2007). For example, some of the effects of insulin on cell pro-

liferation in culture require non-physiological concentrations of insulin (Straus, 1981), and hormones and

nutrients in the culture medium can affect the growth stimulatory effects of insulin (Straus, 1981; Wu

et al., 2007). In Drosophila cells, insulin signaling can promote cell proliferation by inhibiting Foxo, which

is a TF that causes cell-cycle arrest (Puig et al., 2003). However, insulin stimulation significantly promotes

cell proliferation only when Pvr, a receptor tyrosine kinase regulating cell proliferation, is deficient in

Drosophila Kc cells (Sopko et al., 2015). Furthermore, although insulin promotes cell growth (March and

Bentley, 2006; Wu et al., 2007), insulin inhibits cell cycle progression through G2/M (Wu et al., 2007), indi-

cating that insulin regulates cell proliferation in a context-dependent manner.

Here, we constructed a trans-omics network of insulin action that regulates gene expression and meta-

bolism in Drosophila S2R + cells by integrating PPI, phosphoproteomic, transcriptomic, and metabolomic

data following insulin stimulation. Next, as cell growth is required for cell proliferation and insulin can stim-

ulate proliferation in a context-dependent manner, we developed a framework for integrating the trans-

omic network with data from a genome-scale cell proliferation screen using CRISPR (Viswanatha et al.,

2018). This analysis highlights, in particular, the role of the Myc TF in cell growth through coordinated acti-

vation of genes involved in anabolic processes.

RESULTS

Construction of the trans-omic network regulated by insulin and the integration with CRISPR

knockout screening data

Using time-series data of PPIs, phosphoproteome, transcriptome, and metabolome (Figure 1A), together

with various bioinformatic resources (Figure 1B), we constructed a regulatory trans-omic network for insu-

lin-responsive gene expression and metabolic reactions in Drosophila S2R + cells (‘‘trans-omic network of

insulin action’’; Figure 1C). The trans-omic network is composed of five layers: insulin signaling molecules

(insulin signal), TFs, insulin-responsive genes (IRGs), metabolic reactions, and insulin-responsive metabo-

lites (IRMs), with intra/inter-layer regulatory connections between molecules in the same and different

layers (Figure 1C). We analyzed time-series multi-omic data (PPI, phosphoproteomic, transcriptomic, and

metabolomic) measured in insulin-stimulated Drosophila S2R + cells (Figure 1D). Whereas PPI, phospho-

proteomic, and transcriptomic data sets were obtained from previous studies [PPIs of 20 insulin signaling

molecules by affinity purification-MS (AP-MS) (Vinayagam et al., 2016); phosphoproteome LC-MS data

(Vinayagam et al., 2016), and transcriptome (Zirin et al., 2019)], we also generated a new dataset of metab-

olome data by liquid chromatography-mass spectrometry (LC-MS) following insulin stimulation (STAR

Methods). The metabolome and transcriptome were measured up to 180 min after insulin stimulation

and the phosphoproteome and the PPIs were measured up to 30 min after insulin stimulation (Figure 1D).

We defined as ‘‘insulin-responsive’’ molecules that were quantitatively changed by insulin stimulation in

the phosphoproteome, transcriptome, or metabolome data sets. We also determined the direction of

insulin-responsive molecules as either increased or decreased in the amount based on the maximum and

minimum absolute log2 fold change values across time-series compared to time 0 (Figure 1E).

Construction of the trans-omic network involved five steps (Figure 1C). In Step I, we identified IRGs from

RNA-seq data sets. In Step II, we predicted TFs regulating clusters of IRGs using information from a TF

binding motif database and a motif scanning software including Cis-BP and FIMO (Grant et al., 2011; Weir-

auch et al., 2014). In Step III, we predicted upstream signaling pathways regulating the TFs using phospho-

proteomic data (Vinayagam et al., 2016), PPI data of 20 insulin signaling molecules (Vinayagam et al., 2016),

theMIST PPI database (Hu et al., 2018), and theNetPhorest software for kinase prediction (Horn et al., 2014;
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Figure 1. Construction of the trans-omic network regulated by insulin and the integration with CRISPR knockout screen data

(A–C) We used the time-series multi-omic data measured in insulin-stimulated Drosophila S2R + cells (A) and database and software (B) for constructing the

trans-omic network of insulin action that involved Steps I–VI (C).

(D) Time-series multi-omic data measured in insulin-stimulated Drosophila S2R + cells. PPI data were measured for 20 insulin signaling molecules by affinity

purification-mass spectrometry (Table S2) (Vinayagam et al., 2016).
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Miller et al., 2008). In Step IV, we identified IRMs by metabolomic analysis. Finally, in Step V, we connected

the IRMs/IRGs and the metabolic reactions using the KEGG database of metabolic pathways (Kanehisa

et al., 2017) and connected the IRMs and metabolic reactions using the BRENDA database for allosteric

regulations (Chang et al., 2021).

Next, we integrated the trans-omic network with results from a genome-wide pooled CRISPR knockout

screen in Drosophila S2R + cells that identified 1,235 genes essential for cell proliferation (Figure 1F) (Vis-

wanatha et al., 2018) to identify potential subnetworks required for cell growth (Figure 1G).

Step I: identification of IRGs

A previous RNA-seq study of insulin-stimulated Drosophila S2R + cells identified IRGs that were either

increased or decreased following insulin stimulation (Table S1) (Zirin et al., 2019). This study focused on

163 genes, which is a subset of the IRGs that overlapped with 750 genes affecting nucleolar size from a pre-

vious RNAi screen (Neumüller et al., 2013). To further extend this study, we analyzed all the 1,212 IRGs (Fig-

ure 2A; Table S1). Based on our analysis (Figure 1E), 58.8% of the IRGs (713 genes) are increased, whereas

41.2% of the IRGs (499 genes) are decreased (Figure 2A).

Next, we clustered the IRGs by hierarchical clustering with Euclidean distance and Ward’s method (Fig-

ure 2B; Table S1). We analyzed all clusters containing 100 genes or more in hierarchical clustering. Clusters

2 and 3 were obtained by dividing the dendrogram at the top level (Figure 2B). The majority of the genes in

cluster 2 (96%) are increased IRGs. By contrast, the majority of the genes in cluster 3 (94%) are decreased

IRGs. We categorized the IRG clusters into (i) cluster 2 and its sub-clusters as the increased clusters, and (ii)

cluster 3 and its sub-clusters as the decreased clusters.

To identify the functional characteristics of each cluster, we performed a KEGG pathway enrichment anal-

ysis (q value <0.05, Fisher’s exact test; Table S1). Because the clusters generated in this study were not

mutually exclusive, a KEGG pathway can be enriched in overlapping clusters. Therefore, we selected

non-overlapping and significant clusters for each KEGG pathway based on the significance (q value) of

Fisher’s exact test and the hierarchical structure of the dendrogram (STAR Methods) (Buehler et al.,

2004). Increased (clusters 7, 9, 15, and 16) and decreased (clusters 3, 8, and 13) clusters were enriched

for distinct pathways (upper right in Figure 2B). Increased clusters were enriched for multiple anabolic path-

ways such as Ribosome biogenesis in eukaryotes (cluster 7), Protein processing in endoplasmic reticulum

(cluster 9), Spliceosome (cluster 9), Purine metabolism (cluster 15), Pyrimidine metabolism (cluster 15), RNA

polymerase (cluster 15), and D-Glutamine and D-glutamate metabolism (cluster 16). Consistent with these

observations, the insulin/mTOR pathway has been reported to promote the expression of ribosome

biogenesis genes in both mammals and Drosophila using transcriptomic analyses of mutant or overex-

pressed cells or animals of components of the insulin/mTOR signaling pathway (PI3K, Foxo, Myc, S6K, or

Tor), starved and fed conditions, or rapamycin-treated cells (Chauvin et al., 2014; Guertin et al., 2006; Li

et al., 2010; Teleman et al., 2008). Decreased clusters were enriched for DNA replication (cluster 3), Tryp-

tophan metabolism (cluster 8), and FoxO signaling pathway (cluster 13). This result is consistent with a pre-

vious report that Foxo is an evolutionarily conserved TF that is negatively regulated by insulin signaling

(Puig et al., 2003).

Interestingly, increased and decreased clusters are enriched in distinct exclusive pathways, suggesting that

IRGs belonging to the same pathway show a similar time course and are co-regulated by insulin signaling.

To quantitatively evaluate whether IRGs in the same KEGG pathway are co-regulated in a time-dependent

manner, we examined whether average Spearman correlation coefficients between the IRGs in the same

KEGG pathway are higher than those of randomly sampled pairs from all the IRGs (Table S1; STAR

Methods). Strikingly, the average Spearman correlation coefficients of the IRG pairs in the same KEGG

pathways were significantly higher than randomly sampled pairs from the IRGs (Figure 2C). We also

Figure 1. Continued

(E) Definition of changes in the insulin-responsive molecules. We defined an insulin-responsive molecule as ‘‘increased’’ (red) when the absolute value of

maximum (MAX) log2 fold change compared to time 0 (without insulin stimulation) across the time-series is larger than the absolute value of minimum (MIN)

log2 fold change, and as ‘‘decreased’’ (blue) otherwise.

(F and G)We integrated the trans-omic network of insulin action and the CRISPR screen data for cell proliferation inDrosophila S2R + cells (Viswanatha et al.,

2018) (F) to identify subnetworks required for cell growth (G).
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Figure 2. Identification of IRGs and prediction of TFs that regulate the IRGs

(A) Numbers of increased and decreased IRGs and not responsive genes. We divided the IRGs into increased and decreased IRGs as shown in Figure 1E. See

also Table S1.

(B) Heatmap and hierarchical clustering of the Z-score normalized time course of gene expression of the IRGs. We performed hierarchical clustering using

Euclidean distance and Ward’s method. Numbers on the tree diagram indicate the cluster identity. The significantly enriched KEGG pathways and TF

binding motifs are shown on the right. See also Table S1 and STAR Methods.

(C) Distribution of the Spearman correlation coefficients of gene pairs among the IRGs in the same KEGG pathway. We tested whether the average

Spearman correlation coefficients of IRG pairs in the same KEGG pathway were significantly higher than randomly sampled IRG pairs. *p < 0.05, **p < 0.01,

***p < 0.001. See also Table S1 and STAR Methods.

(D) Time course of the IRGs in significantly co-regulated KEGG pathways. Only significantly enriched pathways for any of the IRG clusters are shown. Data are

shown as the log2 fold change values compared to time 0 that are calculated from the mean of biological replicates. Different line colors indicate different

IRGs. We tested whether the average Spearman correlation coefficients of the IRG pairs in each of the KEGG pathways were significantly higher than

randomly sampled IRG pairs. We analyzed KEGG pathways containing 10 or more IRGs. See also Figure S1A, Table S1, and STAR Methods.
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examined the distributions of Spearman correlation coefficients between IRGs within individual KEGG

pathways (Figures 2D and S1A; Table S1). For most of the anabolic pathways enriched for increased clusters

such as Purine metabolism, Pyrimidine metabolism, Protein processing in the endoplasmic reticulum, Spli-

ceosome, Ribosome biogenesis in eukaryotes, and RNA polymerase, the average Spearman correlations of

the IRG pairs within the pathways were significantly higher than those of randomly sampled IRG pairs (Bon-

ferroni-adjusted p value <0.05). Although we identified co-regulated pathways following insulin stimulation

using the correlation analysis of the IRG pairs within the same KEGG pathway, it is possible that we under-

estimated the average Spearman correlation coefficients of some pathways that containmultiple functional

modules (e.g. modules related to synthesis and degradation of a product within a metabolic pathway).

Thus, we analyzed the Spearman correlation coefficients of IRG pairs within KEGG modules. Interestingly,

both the average and median Spearman correlation coefficients of the IRG pairs within some KEGG mod-

ules were significantly higher than those within the KEGG pathways (Figure S1B; Table S1), suggesting the

existence of co-regulated modules showing distinct time-series expression patterns from other modules

within the same KEGG pathway. For instance, whereas the average Spearman correlation within the Purine

and Pyrimidine metabolism pathways was relatively low (0.13 and 0.17, respectively; Figure 2D), we

observed high Spearman correlation coefficients of IRG pairs within the Inosine monophosphate biosyn-

thesis module in Purine metabolism and the Uridine monophosphate biosynthesis module in Pyrimidine

metabolism, which are related to de novo purine synthesis and de novo pyrimidine synthesis, respectively

(Figures S1C and S1D; Table S1). These results suggest that IRGs belonging to the same pathway are

temporally co-regulated by insulin. Altogether, insulin signaling coordinately increased IRGs involved in

anabolic pathways and coordinately decreased IRGs involved in DNA replication in a time-dependent

manner.

Step II: prediction of TFs that regulate IRGs

Next, we predicted TFs regulating the IRG clusters using a motif enrichment analysis (Figure 2B; Table S1;

STAR Methods). If a TF binding motif was enriched in the regions from �1,000 bp to +100 bp of the tran-

scription start site of the genes in a cluster, we predicted the regulatory relationships between the TF and

the genes in that cluster. We selected non-overlapping and significant clusters for each TF binding motif

based on the significance (q value) of Fisher’s exact test and the hierarchical structure of the dendrogram

(STAR Methods) (Buehler et al., 2004).

We predicted TFs for the IRG clusters (lower right in Figure 2B). Interestingly, Myc was identified as a pu-

tative regulator of increased cluster 23 that is a sub-cluster of cluster 7 where ribosome biogenesis genes

are enriched. This result is consistent with previous reports that Myc is regulated by insulin signaling in flies

and ribosome biogenesis is one of the main cellular functions of Myc target genes (Grewal et al., 2005; Li

et al., 2010; Orian et al., 2003; Teleman et al., 2008). Among the predicted TFs for any of the IRG clusters,

gce, Myc, and tai were contained in the IRGs. To validate whether the predicted regulatory relationships

are detected in ChIP-seq data, we compared our findings with the TF target gene regulatory relationships

available in the ChIP-Atlas database (Table S1) (Oki et al., 2018). ChIP-Atlas contains ChIP-seq information

for Myc and Max in Drosophila cell lines among the predicted TFs. The regulatory relationships registered

in ChIP-Atlas for both factors significantly overlapped with our predictions (Bonferroni-adjusted p

value < 0.05, Fisher’s exact test; Figure S2). We also confirmed that KEGG pathways and TF motifs enriched

in any of the analyzed clusters remained similar regardless of a subtle change of the threshold of cluster size

around 100 genes (Figure S3). These results indicate that the TF prediction in our analysis is valid and

robust.

Step III: prediction of upstream signaling pathways regulating the predicted TFs

We connected the TFs to insulin signaling using phosphoproteomic and PPI data (Vinayagam et al., 2016),

NetPhorest software (Horn et al., 2014; Miller et al., 2008), andMIST PPIs (Hu et al., 2018) (Figure 3). We used

phosphoproteomic data to infer possible kinases responsible for phosphorylated proteins with NetPhorest

and Fisher’s exact test. We used PPIs, detected by AP-MS measurement, to predict PPIs of TFs and insulin

signaling molecules. Finally, we integrated the predicted kinase-substrate interactions, PPIs, and MIST

PPIs, and constructed a merged network that allowed us to extract paths from the insulin receptor to

the TFs.

We predicted the kinases responsible for the phosphorylated peptides. Specifically, we identified

268 phosphopeptides (193 proteins), whose phosphorylation levels were increased or decreased following
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insulin stimulation among the 3,037 phosphorylated peptides (1,225 proteins) measured in the phospho-

proteomic data (Figure 3A; Table S2) (Vinayagam et al., 2016). According to our previous study, phospho-

peptides that showed an absolute log2 fold change larger than 0.5 at any time point compared to time

0 were defined as the insulin-responsive phosphopeptides (IRpPs). We divided the IRpPs selected by

this criterion into increased and decreased IRpPs using the method shown in Figure 1E, of which 177

are increased IRpPs (135 proteins), whereas 91 are decreased IRpPs (66 proteins). Eight proteins

contained both increased and decreased IRpPs. Based on the amino acids sequences of the phosphopep-

tides measured in the phosphoproteomic data set, we predicted possible kinases that regulate the

phosphopeptides using NetPhorest, a software for predicting kinase classifiers for input phosphopeptide

sequences (Table S2; STAR Methods) (Horn et al., 2014; Miller et al., 2008). Using these predicted kinase–

substrate relationships (KSRs), we tested whether the predicted substrates of each kinase were enriched in

the increased and decreased IRpPs to identify significantly activated or inhibited kinases, respectively (q

value <0.05, Fisher’s exact test). In sum, 16 and 8 kinases were enriched in the increased and decreased

IRpPs, respectively, including S6k, which is among the baits of the AP-MSmeasurement, and CamKII, which

is a prey identified by the AP-MS measurement (Figure 3B). If the predicted target phosphopeptides of a

kinase were enriched in the increased or decreased IRpPs, then we selected the KSRs between the kinase

and its predicted substrates contained in the increased or decreased IRpPs, respectively, and used them for

the following analysis (Table S2; STAR Methods).

Next, to infer PPIs of TFs and insulin signaling molecules, we identified PPIs of insulin-stimulated

Drosophila S2R + cells from our previous study (Figure 3C) (Vinayagam et al., 2016). PPIs were measured

by AP-MS for the 20 insulin signaling proteins at baseline (without insulin treatment) and after insulin stim-

ulation for 10 or 30 min. The PPIs consist of 555 proteins and 1,807 interactions. We classified the PPIs into

seven types based on the detected time point(s) according to our previous study (Figure 3C) (Vinayagam

et al., 2016).

To construct the merged network, we integrated the IRpPs (Figure 3A), the predicted regulatory relation-

ships from the kinases to the IRpPs (Figure 3B), PPIs (Figure 3C), and the MIST PPI network into a new

network of insulin signaling from receptor to downstream TFs (Figure 3D). We first merged all the data

from these data sources (‘‘Input data’’ in Figure 3D) and extracted the subnetworks containing the signaling

molecules extracted from KEGG, the kinases predicted by NetPhorest, or the predicted TFs to capture the

comprehensive regulatory relationships from the insulin receptor to the TFs through the phosphorylation

and the PPIs (‘‘Step III-I’’ in Figure 3D).

We extracted paths from the insulin receptor to the TFs from themerged network (‘‘Step III-II’’ and ‘‘Step III-

III’’ in Figure 3D; Table S2; STAR Methods). We considered the extracted paths from the insulin receptor to

a TF as the upstream signaling pathways of the TF because the intracellular insulin signaling originates from

the activation of the insulin receptor and is transmitted through its downstream signaling cascade to the

TF. We denoted nodes and edges in the union of the upstream signaling pathways for the TFs as the insulin

signal. Among the 14 predicted TFs, 10 TFs were connected to the upstream signaling pathways (‘‘TFs’’ in

Figure 3E). The resulting insulin signal layer consists of 101 nodes and 357 edges (Table S2). In the insulin

signal layer, we can distinguish the common upstream signaling molecules for all 10 TFs and the specific

Figure 3. Prediction of upstream signaling pathways regulating the predicted TFs

(A) Number of phosphorylated peptides (left) and phosphorylated proteins (right) measured in the phosphoproteome obtained from Vinayagam et al.

(2016). We divided the IRpPs into increased (red) and decreased (blue) IRpPs as shown in Figure 1E. See also Table S2.

(B) Enrichment analysis of possible substrates of each kinase for the increased and decreased IRpPs (q value <0.05, Fisher’s exact test). See also Table S2 and

STAR Methods.

(C) Number of PPIs measured at three different time points after insulin stimulation (0, 10, and 30min after insulin stimulation) (Vinayagam et al., 2016). AP-MS

data were measured for the 20 canonical insulin signaling proteins (Table S2). Note that the number of interactions, not the number of the preys, are shown.

See also Table S2.

(D) Method used for predicting upstream signaling pathways regulating the predicted TFs. See also STAR Methods.

(E) Upstream signaling pathways regulating the predicted TFs. We predicted the signaling pathways from the insulin receptor to each of the TFs following

the procedure shown in Figure 3D and obtained the insulin signal layer by merging the pathways. The border colors of the nodes in the layer correspond to

the colors shown in Figure 3D. The pie charts on the nodes indicate the downstream TFs of the nodes. Data sources are shown on the right side of the nodes

contained in the PPI and phosphorylation network with the color-coded for increased or decreased IRpPs (Figure 3A). The edges derived from the PPIs of

Vinayagam et al. (2016) are colored by the detected time point(s) (Figure 3C), and the others are shown in grey. The network diagram was created using

Cytoscape (Shannon et al., 2003). See also Table S2.

(F) KEGG signaling pathway enrichment analysis of the upstream signaling pathways of each predicted TF. See also Table S2 and STAR Methods.
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upstream signaling molecules for a subset of the TFs by counting the number of downstream TFs for each

of the nodes in the layer. In sum, 8 molecules (6.9%) were found in the upstream paths of all 10 TFs, whereas

65 molecules (64.4%) were upstream of two or more TFs, and 36 molecules (35.6%) were upstream of only

one TF. The molecules that are commonly found in the upstream paths of all 10 TFs include InR, chico

(Drosophila ortholog of insulin receptor substrates), Pi3K21B, and Pi3K92E. Importantly, our predictions

captured the regulatory relationships that have been reported in previous studies. In particular, in

Drosophila cells, Myc is stabilized by insulin/mTOR signaling followed by increased phosphorylation of

Sgg/Gsk3-beta (Parisi et al., 2011). Consistent with this study, Sgg is present in the pathway upstream of

Myc (Figures 3E, S4A, and S4B). We further analyzed which upstream signaling molecules directly regulate

the TFs, as our method involves direct and indirect associations (interactions) between upstream signaling

molecules and the TFs (Figure S4A). We found that RpS6, Msn, Act57B, CaMKII, CkIIalpha, Pont, and Vha26

directly interact with Myc only at 30 min following insulin stimulation (Figures S4A and S4B), suggesting that

Myc is regulated by insulin signaling through the changes in the PPIs with these proteins. To identify the

pathways enriched in the upstream signaling pathways of each TF, we performed pathway enrichment anal-

ysis using KEGG signaling pathway annotation (Fisher’s exact test, q value <0.05; Table S2; STARMethods).

Interestingly, the Hippo pathway is enriched in the upstream signaling pathway of Mnt (Figure 3F), suggest-

ing that insulin possibly regulates TF activities through non-canonical insulin signaling pathways.

Step IV: identification of IRMs

We measured the metabolome in Drosophila S2R + cells following insulin stimulation using LC-MS/MS

(Table S3; STAR Methods). In sum, 236 metabolites were measured in three replicates or more at all

time points (0, 60, 120, and 180 min). We confirmed the high reproducibility of our metabolomic measure-

ments (>0.98 Pearson correlation coefficient between any two biological replicates; Figure S5), and

identified 53 IRMs with 26.4% (14) and 73.6% (39) metabolites that increased and decreased, respectively

(Figure 4A; Table S4). Many IRMs showed a monotonic increase or decrease (Figure 4B).

Next, we mapped the metabolites on the KEGG metabolic pathways (Figure 4C). Out of 236 metabolites

(45 out of 53 IRMs), 200 were mapped on KEGG, and pathway enrichment analysis identified the meta-

bolic pathways containing a significantly large number of the IRMs (Table S4). Although no pathways

were significantly enriched in the increased or decreased IRMs (Fisher’s exact test, q value <0.05), me-

tabolites in purine metabolism, a sub-metabolic pathway of nucleotide metabolism, showed a moderate

enrichment in the decreased IRMs (Fisher’s exact test, uncorrected p value <0.05), and the 12 IRMs con-

tained in this pathway were the highest of all the KEGG pathways (Figure S6). Also, eight IRMs mapped

to the pyrimidine metabolism pathway that is another sub-pathway of nucleotide metabolism. In addi-

tion, IRMs contained TCA cycle intermediates (succinyl-CoA and 2-oxoglutarate decreased, and oxalo-

acetate increased), urea cycle intermediates (L-arginine, L-argininosuccinate, and L-ornithine decreased),

proteinogenic amino acids (L-lysine, L-phenylalanine, and L-arginine decreased), and lactate (increased)

(Figure 4C).

IRMs in purine and pyrimidine metabolism (nucleotide metabolism) pathways accounted for 12/32 (the

IRMs in the pathway/the measured metabolites in the pathway) and 8/28 of the metabolites detected in

each pathway (Figure S6). In addition, enzymes of purine and pyrimidine metabolism were enriched in

the increased IRG clusters (Figure 2B). The majority of the IRMs in the nucleotide metabolism pathway

decreased (15/20 metabolites), which contain nucleosides (Guanine, cytosine), NDP (GDP), NTPs (ATP,

CTP, GTP, TTP, and UTP), and dNTPs (dATP, dCTP, dGTP, and dTTP). Increased IRMs in the nucleotide

metabolism pathway contained dNMP (dTMP), dNDP (CDP), and N-carbamoyl-L-aspartate, which is a

metabolite involved in de novo pyrimidine synthesis catalyzed by carbamoyl-phosphate synthetase2,

aspartate transcarbamylase, dihydrooratase (CAD). In mammalian cells, it has been reported that insulin

increases the metabolic flux of the reaction of CAD and the abundance of N-carbamoyl-L-aspartate

(Ben-Sahra et al., 2013; Robitaille et al., 2013). These results indicate that NTPs and the proteinogenic

amino acids, required for transcription and protein synthesis, decreased, which is consistent with the in-

crease in gene expression of the enzymes involved in these processes.

Step V: connection of the IRMs/IRGs and metabolic reactions

We constructed the trans-omic network by connecting IRGs, metabolic reactions, and IRMs based on the

annotation of enzymatic reactions in the KEGG database, and allosteric regulations from the BRENDA

database (STAR Methods) (Chang et al., 2021).
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Using enzymatic reactions in the KEGG database, we connected IRGs, metabolic reactions, and IRMs to

examine the effect of transcriptional regulation onmetabolism (Table S4). We identified 120 IRGs encoding

metabolic enzymes. These contain the increased IRG rudimentary (r, CAD ortholog of Drosophila), which is

a rate-limiting metabolic enzyme of de novo pyrimidine synthesis, consistent with the increase of

N-carbamoyl-L-aspartate, which is the product of the reaction catalyzed by rudimentary. The phosphory-

lation level of the rudimentary metabolic enzyme was also increased by insulin stimulation (Tables S2

and S4), consistent with previous studies on mammals (Ben-Sahra et al., 2013; Robitaille et al., 2013).

Using allosteric regulations extracted from the BRENDA database, we connected IRMs to metabolic reac-

tions (Table S4). In total, we identified 1,543 allosteric regulations from IRMs to metabolic reactions. Alto-

gether, our analysis identified inter-omic transcriptional and allosteric regulation for metabolic reactions

that can affect the responses of the IRMs.

Step VI: construction of the trans-omic network of insulin action

We integrated the networks of Steps I-V and constructed a regulatory trans-omic network for insulin-

responsive gene expression and metabolic reactions consisting of five layers, which are the insulin signal,

TFs, IRGs, metabolic reactions, and IRMs (Figure 5; Table S5). The connections between the layers are

A B

C

Figure 4. Identification of IRMs and connection of the IRMs/IRGs and metabolic reactions

(A) Number of metabolites measured in themetabolomic data. Metabolites that showed an absolute log2 fold change larger than 0.5 and an FDR-adjusted p

value (q value) of less than 0.1 at any time point were defined as IRMs. The q values were calculated by Storey’s procedure (Storey and Tibshirani, 2003). We

divided the IRMs into increased and decreased IRMs as shown in Figure 1E. See also Table S4.

(B) Heatmap of the log2 scaled fold change (relative to time 0) normalized time courses of the IRMs.

(C) Increasing, decreasing, and non-responsive metabolites projected onto the KEGG metabolic pathways. Substrate-product relationships between the

mapped metabolites (increased, decreased, and not responsive metabolites) were extracted from a KEGG Markup Language file (dme01100) downloaded

from KEGG.
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representing regulatory events. The insulin signal layer contains the signaling molecules on the predicted

signaling pathways from the insulin receptor to the TFs (Figure 3E). The TF layer contains the 14 predicted

TFs regulating the IRGs (Figure 2B). The IRG layer contains the 1,212 IRGs (Figure 2A). The metabolic reac-

tion layer contains 1,376 metabolic reactions regulated by the IRMs and/or the IRGs. The IRM layer contains

53 IRMs (Figures 4A and 4B). We then determined intra- and inter-layer regulatory connections between

insulin-responsive molecules. The intra-layer regulatory connections of the insulin signal layer and the in-

ter-layer regulatory connections from the insulin signal layer to the TF layer were the predicted signaling

pathways from the insulin receptor to the candidate TFs (Figure 3E). The inter-layer regulatory connections

from the TF layer to the IRG layer were determined by the predicted regulatory connections between TFs

and IRGs (Figure 2B). The inter-layer regulatory connections from the IRG to the metabolic reaction layer

were determined by matching metabolic reactions to the corresponding metabolic enzymes encoded

by IRGs according to KEGG annotation. The inter-layer regulatory connections between the metabolic

reaction layer and the IRM layer consisted of two types: (1) regulatory connections mediated by allosteric

regulators assigned according to BRENDA and (2) regulatory connections mediated by the substrate or

product of the reaction according to KEGG.

In our network, insulin activates the insulin receptor in the insulin signal layer and regulates 10 TFs in the TF

layer, which contains Myc that is connected through the signaling pathway components layer that includes

InR, chico, Pi3K, S6K, Akt, and Erk. In the IRG layer, the increased and decreased clusters of the IRGs are

enriched for the distinct KEGG pathways and the functionally similar IRGs are significantly co-regulated

(Figures 2B–2D). The multiple anabolic pathways related to nucleotide synthesis, transcription, and trans-

lation are enriched for the increased clusters of the IRGs and the genes in each of those pathways are co-

regulated. On the other hand, genes related to DNA replication are enriched for the decreased clusters

and co-regulated in a time-dependent manner. Insulin regulates the metabolic reactions in the metabolic

reaction layer through the regulation of the expression levels of the metabolic enzyme genes in the IRG

layer and changes the concentration of the metabolites in the IRM layer. For example, insulin increases

the expression level of the rudimentarymetabolic enzyme gene, which is a rate-limiting metabolic enzyme

Figure 5. Construction of the trans-omic network of insulin action

The trans-omic network contains five layers and the regulatory relationships among them. The representative insulin-responsive molecules or significantly

co-regulated pathways enriched in the IRG clusters in the trans-omic network are shown. The numbers of each type of insulin-responsive node and edge are

shown on the right of the network diagram. The network diagram was created using Cytoscape (Shannon et al., 2003). See also Table S5.
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of de novo pyrimidine synthesis, and the increase of rudimentary is consistent with the increase in the con-

centration of N-carbamoyl-aspartate, which is catalyzed by the rudimentary metabolic enzyme (Figure 4C).

In the IRM layer, the five NTPs and the three proteinogenic amino acids (L-Arginine, L-Lysine, and

L-Phenylalanine) are decreased, which is consistent with increases in the expression of genes related to

transcription (e.g., RNA polymerase and spliceosome) and translation (e.g., ribosome biogenesis). It is

also possible that the IRMs regulate various metabolic processes through allosteric regulations. Alto-

gether, the construction of the trans-omic network of insulin action revealed the functional and temporal

characteristics of insulin-responsive molecules and the regulatory relationships among them.

Step VII: integration of the trans-omic network of insulin action with a CRISPR screen for cell

proliferation

We previously performed a genome-wide pooled CRISPR knockout screening for cell proliferation in

Drosophila S2R + cells and identified 1,235 genes essential for cell proliferation (hereafter denoted as

screen hits) (Table S6) (Viswanatha et al., 2018). Thus, as cell growth is required for cell proliferation and

insulin can stimulate proliferation in a context-dependent manner, we hypothesized that part of the

trans-omic network of insulin action includes the essential genes identified in the CRISPR screen for cell

proliferation. Next, we compared the screen hits and the molecules in the trans-omics network, specifically

the molecules in the insulin signal, TFs, and IRGs layers. As expected, the screen hits and the molecules in

the trans-omic network were overlapping significantly (249 genes; p value = 2.90e-33, Fisher’s exact test;

Figure 6A).

To identify cellular functions involved in cell growth and proliferation that are regulated in an insulin-

dependent manner in S2R + cells, we analyzed the KEGGpathways enriched for the screen hits overlapping

with the trans-omic network (hereafter denoted as insulin-responsive screen hits) as well as the remaining

screen hits that are not overlapping with the trans-omic network (hereafter denoted as insulin non-respon-

sive screen hits) (Table S6). In sum, 35 pathways were enriched in either the insulin-responsive screen hits or

the insulin non-responsive screen hits (q value <0.05, Fisher exact test; Figure 6B). Only three pathways

(mRNA surveillance pathway, Protein processing in endoplasmic reticulum, and RNA degradation) were

enriched in both insulin-responsive and non-responsive screen hits (shown in black in Figure 6B). In sum,

16 pathways were specifically enriched for the insulin-responsive screen hits (shown in dark green in Fig-

ure 6B), among which are the signaling pathways and multiple anabolic pathways such as Purine meta-

bolism, Pyrimidine metabolism, RNA polymerase, and Ribosome biogenesis in eukaryotes. All of those

anabolic pathways were enriched in the increased IRG clusters (Figure 2B). This is consistent with previous

studies that those anabolic pathways are activated by insulin/IGF signals to support cell growth and pro-

liferation (Valvezan and Manning, 2019; Wullschleger et al., 2006; Zhu and Thompson, 2019). On the other

hand, 16 pathways were specifically enriched for the insulin non-responsive screen hits (shown in light

green in Figure 6B). Some of these pathways are involved in glucose and energy metabolism (TCA cycle,

and Oxidative phosphorylation), protein catabolism (Proteasome and Ubiquitin mediated proteolysis),

DNAmetabolism, RNAmetabolism, and protein synthesis. In contrast to the pathways specifically enriched

in the insulin-responsive screen hits, the pathways specifically enriched in insulin non-responsive screen hits

are relevant to catabolic processes and DNA replication, none of which are signaling pathways. Some of

the anabolic pathways that were over-represented only for insulin non-responsive screen hits were also en-

riched for the preys of the PPI data that were not used for the network construction (i.e., the preys that are

not contained in signaling pathways of the KEGG database) (Figure S7; Table S6). Those pathways contain

Ribosome and Spliceosome, suggesting that these pathways are regulated at either post-transcriptional or

post-translational levels. The association of ribosomal proteins and mTORC2, which is a component of the

signaling pathways regulated by growth factors such as insulin, has previously been reported (Zinzalla et al.,

2011). The result of pathway enrichment analysis indicates that the insulin signal regulates a large part of

the genes involved in signaling pathways and anabolic pathways that are needed for cell growth and pro-

liferation in S2R + cells. In addition, the regulations by insulin signal happen at both the transcriptional level

and the post-transcriptional, or post-translational level in S2R + cells.

In this transcriptomic analysis, we found that the expression levels for the gene pairs of the IRGs in the same

KEGG pathways show significantly higher Spearman correlation coefficients, i.e., the functionally similar

IRGs tend to be co-regulated by insulin signaling (Figure 2D). We further investigated whether this trend

was also found in the gene pairs from the screen hits. We hypothesize that the pairs between the screen

hits should show significantly higher Spearman correlation coefficients if co-regulation of the functionally
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similar IRGs is important in the context of cell growth and proliferation. We first divided the IRGs into two

groups as (1) ‘‘hit-IRGs,’’ which contain IRGs overlapping with the screen hits; (2) ‘‘non-hit IRGs,’’ which are

the IRGs not overlapping with the screen hits. Then we calculated Spearman correlation coefficients for the

gene pairs within each group, and the gene pairs between hit IRGs and non-hit IRGs groups as well as

randomly sampled pairs of all IRGs. The average and median Spearman correlation coefficients of the pairs

within the hit-IRGs (0.19 and 0.56, respectively) were the highest among all the three groupings shown in

Figure 6C and the average Spearman correlation coefficients of pairs within hit-IRGs were significantly

higher than randomly sampled IRG pairs (Bonferroni-adjusted p value <0.05; Table S6; STAR Methods).

In addition, the distributions of the correlation coefficients were significantly different between the groups

(Bonferroni-adjusted p value <0.05, Wilcoxon rank-sum test; Figure 6C; Table S6). These results indicate

that the gene pairs within hit-IRGs are more likely to be co-regulated than other pairs, suggesting that

the co-regulation of IRGs is important in the context of cell growth and proliferation. We examined which

genes of the KEGG pathways were co-regulated among hit-IRGs. Only Purine metabolism and Ribosome

biogenesis in eukaryotes contained 10 or more hit-IRGs. Both of these pathways significantly show high

average Spearman correlation coefficients calculated within the hit-IRGs in each of the pathways (Bonfer-

roni-adjusted p value <0.05; Figure 6D; Table S6; STAR Methods).

Molecules in the trans-omics network and the screen hits significantly overlap (Figure 6A), suggesting that

at least a part of the trans-omics network is required for cell growth in the context of cell proliferation.

Therefore, we aimed to identify subnetworks that are required for cell growth in an insulin-dependent

manner. We hypothesized that TFs regulating cell growth in an insulin-dependent manner are likely to

be regulated by genes that negatively/positively affect cell growth and likely regulate them (Figure 6E).

We predicted subnetworks that are potentially required for cell growth as shown in Figure 6E (STAR

Methods). We identified the subnetwork containing Myc, the TF, and its upstream signaling pathways,

as well as its target IRGs as a potential subnetwork required for cell growth in an insulin-dependent manner

(Figures 6F and 6G; Table S6). Myc has been reported to regulate cell growth in both Drosophila and mam-

mals (Dang, 2013; Johnston et al., 1999), and in addition, Myc has also been reported regulated by insulin/

IGF signaling in Drosophila (Demontis and Perrimon, 2009; Parisi et al., 2011; Teleman et al., 2008). In the

predicted subnetwork surroundingMyc, the upstream signalingmolecules contain Rheb and Tor, which are

components of mTOR signaling regulating cell growth (Oldham andHafen, 2003;Wullschleger et al., 2006),

rl (Drosophila ortholog of Erk) and pdk1, which are well-known components of the insulin signaling pathway

(Teleman, 2009), and Sgg/Gsk3-beta, which has been reported as a potential Myc regulator (Parisi et al.,

2011). Pathways regulated by Myc contained anabolic pathways such as protein folding, nucleotide meta-

bolism, and translation. These pathways also contain Prat, a rate-limiting enzyme of the purine metabolism

pathway, and genes involved in ribosome biogenesis that were increased and highly co-regulated by

Figure 6. Integration of the trans-omic network of insulin action with a CRISPR screen for cell proliferation

(A) Numbers of molecules in the trans-omic network and screen hits. The p value of Fisher’s exact test is shown above the Venn diagram. See also Table S6.

(B) KEGG pathway enrichment analysis for the insulin-responsive and insulin non-responsive screen hits. See also Table S6.

(C) Distribution of Spearman correlation coefficients of the pairs within hit-IRGs, between hit-IRGs and non-hit IRGs, and within non-hit IRGs. To test co-

regulation of IRGs within the above categories, we examined whether the average Spearman correlation coefficients of the IRG pairs in each of the

categories were significantly higher than randomly sampled IRG pairs. We also compared the distribution of Spearman correlation between the categories

by the Wilcoxon rank-sum test. *p < 0.05, **p < 0.01, ***p < 0.001. See also STAR Methods and Table S6.

(D) Time course of the hit-IRGs in significantly co-regulated KEGG pathways. Data are shown as the log2 fold change values compared to time 0 that are

calculated from the mean of biological replicates. Different line colors indicate different hit-IRGs. We tested the significance of the average Spearman

correlation in each group as described in the STAR Methods. We analyzed KEGG pathways containing 10 or more hit-IRGs. See also Table S6.

(E) We predicted subnetworks required for cell growth in an insulin-dependent manner in the following two steps (Step VII-I and VII-II). In Step VII-I, we

extracted TF-centric subnetworks each containing a TF, its upstream signaling pathways, and its target IRGs from the trans-omic network of insulin action.

We mapped the Z-score obtained from the CRISPR KO screen to the extracted subnetworks. In Step VII-II, we selected subnetworks required for cell growth

by the following three criteria: (i) the results of Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) is significant for upstream signalingmolecules

of a TF (FDR <0.05); (ii) the result of GSEA is significant for the target IRG for the TF (FDR <0.05); and (iii) the TF itself is a screen hit.

(F) The scatterplot shows the Z-score of the CRISPR screen for each of the screened genes. A smaller Z-score indicates a lower cell proliferation activity.

Genes are sorted by the Z-score. The barcode plots below the scatterplot show the distribution of the upstream signaling molecules (‘‘Sig.’’) of the TFs

(Figure 3E), and the target IRGs (‘‘IRGs’’) regulated by the TFs (Figure 2B). Bar graphs indicate the normalized enrichment score (NES) of GSEA and the color

of a bar indicates the significance of the NES (FDR< 0.05). Labels of TFs included in subnetworks involved in cell growth defined in Figure 6E are shown in red.

(G) The predicted subnetwork required for cell growth consists of a TFMyc, its upstream signalingmolecules (insulin signal; Figure 3E), and its target hit-IRGs

(IRGs; Figures 2B and 6A). The TF layer contains the Myc TF that is required for cell growth as shown in red in Figure 6F. The pathway layer contains KEGG

pathways that contain three or more members that overlap with the hit-IRGs regulated by Myc. Pathways containing two or fewer members that overlap with

the hit-IRGs regulated by Myc were categorized as ‘‘Other functions.’’ See also Table S6.
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insulin at the gene expression levels (Figures 2B, 2D, and 6D). Thus, integration of the trans-omic network

and the CRISPR screening data suggests that insulin is connected to cell growth through a subnetwork con-

taining Myc, its upstream signaling pathway, and its target IRGs involved in anabolic processes.

DISCUSSION

In this study, we constructed a trans-omic network of insulin action in Drosophila S2R + cells by integrating

time course PPI, phosphoproteomic, transcriptomic, and metabolomic data following insulin stimulation

with bioinformatics resources. In the trans-omic network, 14 TFs, including Myc, and their upstream

signaling pathways coordinately upregulated multiple anabolic processes such as nucleotide synthesis,

transcription, and translation in a time-dependent manner. These responses may contribute to the

decrease in metabolites such as NTPs and proteinogenic amino acids that are required for transcription

and translation. We further analyzed how insulin signaling regulates cell growth in the context of cell pro-

liferation by integrating the trans-omic network and the results from a previous CRISPR knockout screen for

cell proliferation. Among the subnetworks surrounding various TFs in the trans-omic network, we identified

a subnetwork including Myc, its upstream signaling pathways, and its downstream target genes as being

involved in anabolic processes regulating cell growth in an insulin-dependent manner.

We identified a coordinated upregulation of IRGs in multiple anabolic processes such as nucleotide syn-

thesis, transcription, and translation in the time series. The IRGs related to these processes were also en-

riched in the screen hits of the CRISPR screen for cell proliferation. To precisely regulate cell growth, cells

need to coordinately promote macromolecular syntheses of the substrates (e.g. nucleotides and amino

acids), as well as the components of the transcriptional and translational machinery. Imbalances in these

processes can have detrimental effects. In our previous study (Zirin et al., 2019), we showed that inhibition

of aminoacyl-tRNA synthases selectively kills Myc-overexpressed HMEC cells, which has been known to in-

crease the activity of ribosome biogenesis. In addition, it has been reported that PI3K activation, which is

known to activate protein synthesis, together with knockdown of either protein synthesis- or protein catab-

olism-related genes, causes synthetic lethality. However, simultaneous inhibition of both pathways causes

no lethality (Davoli et al., 2016). In another study, MYC-overexpressing human cells have been reported to

show higher sensitivity to splicing inhibition than normal cells (Hsu et al., 2015; Kessler et al., 2012). The in-

crease in the IRGs in the multiple anabolic pathways that are essential for cell growth and proliferation and

the co-regulation of the IRGs within each of the anabolic pathways are reasonable regulatory strategies to

balance the activities between anabolic pathways and maintain stoichiometry of the genes within each

anabolic pathway. The significant co-regulation of the hit-IRGs further supports this interpretation.

Although this study alone does not provide a causal relationship between the co-regulation of the IRGs

related tomacromolecule synthesis and the capacity of cell growth and proliferation, our results may reflect

a design principle of the regulation of genes related to macromolecule synthesis under the constraints

described above.

The trans-omic network and the CRISPR knockout screening data are complementary. The trans-omic

network provides the mechanistic regulatory relationships between insulin-responsive molecules, how-

ever, it does not contain the functional information on how each node in the network affects phenotypes,

such as cell growth and proliferation. On the other hand, the CRISPR screen data provide quantitative in-

formation about the phenotypic effects of gene knockout on cell proliferation, but it does not directly pro-

vide the underlying molecular mechanisms. Therefore, integrative analysis of the trans-omic network and

the CRISPR screen data can provide insights into molecular mechanisms. This approach is useful for nar-

rowing down for example important subnetworks for the regulation of cell growth. Importantly, loss-of-

function phenotypes are less likely to be buffered by functionally redundant paralogs in Drosophila than

in mammals (Ewen-Campen et al., 2017; Viswanatha et al., 2018). In this study, the subnetwork surrounding

Myc, which contains potential downstream effectors involved in anabolic pathways such as protein process-

ing/synthesis and nucleotide metabolism, was predicted as key for the regulation of cell growth in the

context of cell proliferation. Myc is an evolutionarily conserved TF that regulates cell growth and prolifer-

ation fromDrosophila to mammals and is regulated by insulin/mTOR signaling (Bellosta and Gallant, 2010).

Our data-driven approach recapitulated the role of Myc as an important regulator of cell growth in an in-

sulin-dependent manner, supporting the versatility of our approach for identifying evolutionarily

conserved networks regulating phenotypes. In addition, our network provides a resource for the identifi-

cation of novel regulatory relationships. Finally, the pipeline constructed in this study can be applied to

other stimulatory signals and phenotypes.
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In our previous studies, we have analyzed the insulin action on the metabolism in mammalian cells (Kawata

et al., 2018; Krycer et al., 2017; Noguchi et al., 2013; Ohno et al., 2020; Yugi et al., 2014). In these studies,

glycolytic intermediates such as glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate (F6P),

fructose-1,6-bisphosphate (F1,6BP), dihydroxyacetone phosphate (DHAP), 3-phosphoglycerate (3PG), and

phosphoenolpyruvate (PEP), were reported to either increase or decrease following insulin stimulation. On

the other hand, although all the above glycolytic intermediates were also measured in our metabolomic

data, none of them were found to respond to insulin stimulation. In Drosophila, insulin, as is the case in

mammals (Saltiel and Kahn, 2001), has been shown to regulate glucose metabolism (Teleman, 2009).

Furthermore, we found that in our metabolomic analysis, that lactate, a product of glycolysis, increased af-

ter insulin stimulation, suggesting that the glycolytic flux may be increased by insulin stimulation in S2R +

cells. Thus, one possible reason for the small number of IRMs belonging to the glycolytic pathway in our

study may be owing to the time point measurements of our metabolome data. We have previously shown

that, in rat FAO cells, some glycolytic intermediates (e.g. F1,6BP, DHAP, 2PG, 3PG, and PEP) transiently

increased following insulin stimulation and returned to basal levels 60 min afterward (Yugi et al., 2014).

Here, we measured the metabolome at 60, 120, and 180 min after insulin stimulation, which may not

have captured the transient response occurring within 60 min. Further, the glycolytic flux can increase

without changes in metabolite concentration. Metabolic flux analysis using 13C-labeled glucose would

address this issue in the future. To elucidate the rapid responses of metabolites and regulatory mecha-

nisms of glucose metabolism in Drosophila, additional data in a shorter timescale than 60 min will be

required.

In our transcriptomic analysis, the IRGs in the pathways related to nucleotide synthesis, transcription, and

translation were upregulated by insulin stimulation. In addition, the gene expression and phosphorylation

level of rudimentary, a rate-limiting metabolic enzyme of de novo pyrimidine metabolism, and the abun-

dance of N-carbamoyl-L-aspartate, which is the product of the reaction catalyzed by rudimentary,

increased after insulin stimulation. Consistent with our findings, in mammals, syntheses of macromolecules

such as nucleic acids, lipids, and proteins are promoted by mTORC1 depending on growth factors (e.g.

insulin and IGF) and nutrient and energy status (e.g. amino acids, glucose, and ATP) (Valvezan and Mann-

ing, 2019; Wullschleger et al., 2006; Zhu and Thompson, 2019). These results suggest that macromolecule

syntheses increased after insulin stimulation in S2R + cells. NTPs and proteinogenic amino acids are

consumed by transcription and protein synthesis, and the intermediate metabolites of the TCA cycle are

used as substrates for nucleotide and amino acid synthesis. The decrease in the NTPs, the amino acids,

and the TCA cycle intermediates observed in our metabolomic analysis may reflect the increased activity

of transcription and protein synthesis through the increased gene expression of these pathways. Further-

more, in Drosophila KC cells, insulin stimulation has been reported to activate the pentose phosphate

pathway that is an important source of nucleotide synthesis (Ceddia et al., 2003). Altogether, these data

suggest that the trans-omic network constructed in this study mainly captures the anabolic effects of insulin

signaling that are important for cell and organismal growth from Drosophila to mammals (Oldham and

Hafen, 2003).

In this study, we extended the framework of the trans-omic analyses of insulin action developed in our pre-

vious studies mainly on two points (Kawata et al., 2018; Yugi et al., 2014). First, we previously constructed

trans-omic networks involving kinase-substrate interactions and networks in the KEGG database without

PPIs (Kawata et al., 2018; Yugi et al., 2014). Here, we newly integrated into the trans-omic network, the

PPI network built using AP-MS following insulin stimulation. Therefore, we expect that our Drosophila

trans-omic study captures context-specific interactions that we were not able to address previously. Sec-

ond, we explored the mechanisms regulating cell growth in an insulin-dependent manner by integrating

the trans-omic network and the CRISPR cell proliferation screen, providing new insights into the functional

aspects of the trans-omic network. Finally, as insulin signaling is evolutionarily conserved, we anticipate

that many aspects of the Drosophila insulin network presented here will be relevant to the corresponding

mammalian network.

Limitations of the study

In this study, our integrative analysis of the trans-omic network of insulin action and the CRISPR screening

data for cell proliferation successfully identified Myc as a key regulator of cell growth in an insulin-depen-

dent manner, and identified the potential novel upstream regulators and target genes of Myc. However,

further experiments are needed to validate the causal relationships of the changes in the activity of Myc
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and these molecules following insulin stimulation. Furthermore, our study does not directly capture some

important aspects of insulin action such as changes in metabolic flux, post-transcriptional regulations, and

epigenetic regulations. Future studies will be required to expand the trans-omic network to include other

data types. Regardless of these limitations, we provide a framework for integrating a trans-omic network

and CRISPR screen data.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Shinya Kuroda (skuroda@bs.s.u-tokyo.ac.jp).

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Insulin from bovine pancreas Sigma-Aldrich Cat#I6634

Deposited data

Metabolomic data This paper Table S3

Transcriptomic data Zirin et al. (2019) GEO: GSE129292

Phosphoproteomic data Vinayagam et al. (2016) Table S4

Affinity purification MS data Vinayagam et al. (2016) Table S1

CRISPR knockout screening data Viswanatha et al. (2018) https://doi.org/10.7554/eLife.36333.012

Experimental models: Cell lines

D. melanogaster: Cell line S2R+ Laboratory of Norbert Perrimon N/A

Software and algorithms

Source code This paper https://doi.org/10.5281/zenodo.6414309

Python version 3.8.3 Python Software Foundation https://www.python.org; RRID:SCR_008394

R version 3.6.3 R Core Team (2021) https://www.r-project.org/

FlyBase version FB2018_04 Larkin et al. (2021) https://flybase.org/; RRID:SCR_006549

KEGG Kanehisa et al. (2017) http://www.kegg.jp/; RRID:SCR_012773

Cis-BP version 1.02 Weirauch et al. (2014) http://cisbp.ccbr.utoronto.ca; RRID:SCR_017236

MEME suite version 4.12.0 Bailey et al. (2015) http://meme-suite.org/; RRID:SCR_001783

FIMO version 4.12.0 Grant et al. (2011) https://meme-suite.org/meme/meme_5.3.2/

doc/fimo.html

ChIP-atlas Oki et al. (2018) https://chip-atlas.org/; RRID:SCR_015511

BedTools version 2.21.0 Quinlan and Hall (2010) https://github.com/arq5x/bedtools2;

RRID:SCR_006646

PyBedTools version 0.8.1 Dale et al. (2011) https://daler.github.io/pybedtools/#;

RRID:SCR_021018

NetPhorest human version 2.1 Horn et al. (2014); Miller et al. (2008) https://netphorest.info/

NetWorKIN version 3.0 Linding et al. (2008) http://networkin.info/; RRID:SCR_007818

MyGene.info version 3 Xin et al. (2016); Wu et al. (2013) https://mygene.info/; RRID:SCR_018660

DIOPT Ortholog Finder version 8 Hu et al. (2011) https://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl

MIST version 4.0 Hu et al. (2018) https://fgrtools.hms.harvard.edu/MIST/

Cytoscape version 3.8.2 Shannon et al. (2003) https://cytoscape.org/; RRID:SCR_003032

BRENDA version 2021.2 Chang et al. (2021) http://www.brenda-enzymes.org;

RRID:SCR_002997

GSEA version 4.0.3 Subramanian et al. (2005) http://www.broadinstitute.org/gsea/;

RRID:SCR_003199
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Materials availability

This study did not generate new unique reagents.

Data and code availability

The metabolomic data generated in this study is available in Tables S3. Publicly available data used in the

study are listed in the key resources table.

The code used for the analysis in this paper is available online at https://doi.org/10.5281/zenodo.6414309.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila S2R + cells (sex: male) were cultured in Schneider’s Drosophila medium (21,720–024; Thermo

Fisher Scientific) supplemented with 10% fetal bovine serum at 25 �C. For insulin treatment, cells were incu-

bated overnight in serum-free Schneider’s Drosophila medium.

METHOD DETAILS

Targeted mass spectrometry and data analyses

Drosophila S2R + cells were incubated overnight in serum-free Schneider’s Drosophila medium

(21,720–024; Thermo Fisher Scientific). Cells were then treated with 25 mg/mL insulin from bovine pancreas

(I6634; Sigma-Aldrich) for 0, 60, 120, or 180 min 1 3 106 cells per sample (5 biological replicates) were

collected on ice and rapidly snap frozen in liquid nitrogen. The intracellular metabolites were extracted us-

ing 1 mL of cold (�80 �C) 80% (v/v) aqueous methanol. The insoluble material in the lysates was centrifuged

at 5,000 g for 5 min. The resulting supernatant was evaporated using a speed vac. Samples were re-sus-

pended using 20 mL HPLC grade water for mass spectrometry. 10 mL were injected and analyzed using a

5500 QTRAP triple quadrupole mass spectrometer (AB/SCIEX) coupled to a Prominence UFLC HPLC sys-

tem (Shimadzu) via selected reaction monitoring (SRM) of a total of 287 endogenous water-soluble metab-

olites for steady-state analyses of the samples. Some metabolites were targeted in both the positive and

negative ion mode for a total of 287 SRM transitions using positive/negative polarity switching. ESI voltage

was +4900 V in the positive ion mode and �4500 V in the negative ion mode. The dwell time was 3 ms per

SRM transition, and the total cycle time was 1.55 s. Approximately 10-14 data points were acquired per de-

tected metabolite. Samples were delivered to the mass spectrometer via normal phase chromatography

using a 4.6 mm i.d x 10 cm Amide Xbridge HILIC column (Waters Corp.) at 350 mL/min. Gradients were

run starting from 85% buffer B (HPLC grade acetonitrile) to 42% B from 0-5 min; 42% B to 0% B from

5-16 min; 0% B was held from 16-24 min; 0% B to 85% B from 24-25 min; 85% B was held for 7 min to re-

equilibrate the column. Buffer A was comprised of 20 mM ammonium hydroxide/20 mM ammonium

acetate (pH = 9.0) in 95:5 water:acetonitrile. Peak areas from the total ion current for each metabolite

SRM transition were integrated using Multi-Quant v2.0 software (AB/SCIEX).

QUANTIFICATION AND STATISTICAL ANALYSIS

Step I: identification of IRGs

Identification of IRGs

We identified IRGs from time-series RNA-seq data obtained in insulin-stimulatedDrosophila S2R + cells as

described in our previous study (Zirin et al., 2019). Briefly, wemodeled the expression levels of each gene as

the added sum of 3 parts: (i) the time effect after insulin stimulation, modeled as a cubic polynomial of time

t; (ii) potential confounding components, such as batch effects, extracted using surrogate variables; and (iii)

random white noise, modeled as a normal distribution with a mean of 0. We applied an F-test statistical

framework to test each gene for the null hypothesis that the gene is not differentially expressed over

time vs. the alternative hypothesis that the gene is temporally differentially expressed.

Hierarchical clustering of the IRGs

We subtracted the effects of the surrogate variables estimated by the statistical model used in the identi-

fication of the IRGs from the log2 scaled normalized read count for each IRG. We calculated the Z-score

from the obtained values and performed hierarchical clustering using Euclidean distance and Ward’s

method. We analyzed all clusters containing 100 genes or more in hierarchical clustering.
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KEGG pathway enrichment analysis

The enrichment of the genes in each pathway was determined using one-tailed Fisher exact test, and KEGG

pathways with q values of less than 0.05 were defined as significantly enriched. The q values were calculated

by the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). We used the genes measured in

the RNA-seq data as a background. Because the clusters analyzed in this study were not mutually exclusive,

a pathway can be enriched in overlapping clusters. We selected non-overlapping and significant clusters

based on the significance (q value) of Fisher exact test and the hierarchical structure of the dendrogram

(see ‘‘Finding non-overlapping and statistically significant clusters of a hierarchical clustering’’).

Finding non-overlapping and statistically significant clusters of a hierarchical clustering

We selected non-overlapping and significant clusters for each of the pathways or TF motifs based on the

significance (q value) of Fisher exact test and the hierarchical structure of the dendrogram. If the genes

included in each of the two clusters overlapped, we defined the pair of clusters as ‘‘overlapping clusters’’

(e.g. clusters 1 and 2 in Figure 2B). If not, we defined a pair of clusters as ‘‘non-overlapping clusters’’ (e.g.

clusters 2 and 3 in Figure 2B). We used ‘‘computational recognition and analysis of statistically significant

subtrees (CRASSS)’’, which is an algorithm for finding the most statistically significant and non-overlapping

clusters of hierarchical clustering (Buehler et al., 2004).

Identification of significantly co-regulated groups of IRG pairs

To identify significantly co-regulated groups of IRG pairs (e.g. pairs among the IRGs within a KEGG

pathway), we tested whether the average Spearman correlation coefficient of IRG pairs was significantly

higher or not. The same number of IRG pairs as the one that is used for hypothesis testing were randomly

sampled 1000 times from all the pairs among the IRGs. For each sampling, the average Spearman corre-

lation of the sampled IRG pairs was calculated. We obtained a p value by calculating the percentage of

random sampling exhibiting larger average Spearman correlations than that calculated from the tested

pairs. We defined a group of IRG pairs with Bonferroni-corrected p value less than 0.05 as significantly

co-regulated. A similar method has been used in a previous study (Hansson et al., 2012). *p < 0.05,

**p < 0.01, ***p < 0.001.

Step II: prediction of TFs that regulate IRGs

Prediction of TF binding motif and inference of regulatory connections between TFs and genes

We predicted TFs regulating the IRG clusters based on the method developed in previous studies (Mina

et al., 2015a; 2015b). The sequences of the flanking regions of genes were downloaded from FlyBase

(version FB2018_04) (Larkin et al., 2021). The region from �1000 bp to +100 bp of the transcription start

site was defined as the flanking region. Although distal regulatory DNA elements can affect gene expres-

sion levels, information on interaction with such regions is available only for a subset of the genes in the

Drosophila genome. Furthermore, a prediction of TF binding motifs for all potential distal regulatory re-

gions can increase false positives. For these reasons, we used the regions from �1000 bp to +100 bp of

the transcription start site for our analysis. The TF binding motifs in each flanking region were predicted

using Cis-BP (version 1.02), a TF binding motif database, and FIMO (version 4.12.0), a TF binding motif pre-

diction tool (Grant et al., 2011; Weirauch et al., 2014). The information on TF binding motifs in Cis-BP was

downloaded from the MEME suite (version 4.12.0) (Bailey et al., 2015). We used FIMO with the default pa-

rameters. We used only the binding motifs of TFs detected in any of the omic data analyzed in this study

(PPI, phosphoproteome, and transcriptome). For the prediction of regulatory connections between TFs

and IRGs, we performed TF motif enrichment analysis of the genes in each cluster. The enrichment of TF

binding motif in the flanking regions of genes in each cluster was determined by one-tailed Fisher exact

test, and TF binding motifs with q values less than 0.05 were defined as significantly enriched. The q values

were calculated by the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). We used the

genes measured in the RNA-seq data as a background. If a TF binding motif was enriched in the promoter

regions of the genes in a cluster, then we inferred the regulatory connections between the corresponding

TF and the genes in the cluster. Because the clusters analyzed in this study were not mutually exclusive, a TF

binding motif can be enriched for overlapping clusters. We selected the non-overlapping and significant

clusters based on the significance (q value) of Fisher exact test and the hierarchical structure of the dendro-

gram (see ‘‘Finding non-overlapping and statistically significant clusters of a hierarchical clustering’’).
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Confirmation of the TF predictions using data from ChIP-Atlas

For the validation of the predicted regulatory connections, we examined the overlap between the pre-

dicted target genes of each TF and those predicted from experimental ChIP data from the ChIP-Atlas data-

base (Oki et al., 2018). Genes whose flanking region around the transcription start sites were detected in

ChIP-sequencing peaks were obtained using BedTools (v2.21.0) with PyBedTools (Dale et al., 2011; Quinlan

and Hall, 2010). We used the flanking regions from�1000 bp to +100 bp of the transcription start sites. The

overlap between the predicted genes and genes fromChIP data was determined by one-tailed Fisher exact

test, and those with Bonferroni adjusted p value less than 0.05 were defined as significant.

Step III: prediction of upstream signaling pathways regulating the predicted TFs

Identification of IRpPs

Weextracted phosphopeptides whose phosphorylation levels were increased or decreased by insulin stim-

ulation from phosphoproteome data measured in our previous study (Vinayagam et al., 2016). Accordingly,

phosphopeptides that showed an absolute log2 fold change larger than 0.5 at any time point compared to

time 0 were defined as IRpPs.

Identification of PPIs from the AP-MS data

PPIs and their detected time points were extracted from the AP-MS data of insulin-stimulated Drosophila

S2R + cells measured in our previous study (Vinayagam et al., 2016).

Prediction of protein kinases for protein phosphorylation

We predicted kinases regulating the IRpPs using the NetPhorest software and Fisher exact test. First, we

predicted possible kinases for the phosphopeptides measured in the phosphoproteomic dataset based

on the amino acid sequences of the proteins corresponding to the phosphopeptides using a standalone

version of NetPhorest for humans with the default parameters (Horn et al., 2014; Miller et al., 2008). The

input data for NetPhorest are fly protein sequences in FASTA format. The outputs for NetPhorest are pos-

terior probabilities of an amino acid residue being recognized by a protein kinase classifier (kinases with

similar substrate recognition motifs). Among the candidate classifiers, we selected the classifier with the

posterior probability value larger than 0.035 as well as the posterior to be higher than the prior as the kinase

classifier related to the amino acid sequence. The threshold of the posterior probability value was applied

from previous studies (Buljan et al., 2020; Freschi et al., 2014; So et al., 2015; Tan et al., 2009). A predicted

KSR is represented as an edge between a kinase classifier as one node and a phosphorylation site as the

other node. We also extracted individual kinases within each classifier from a table provided by NetworKIN

software and defined these kinases as possible protein kinases regulating the predicted phosphosites for

the kinase classifier. We converted the protein IDs (Ensembl) of the responsible protein kinases to the gene

IDs (HGNC) using MyGene.info (version 3) (Wu et al., 2013; Xin et al., 2016) (http://mygene.info/). We con-

verted the obtained human gene IDs of the responsible protein kinases to the fly gene IDs by DIOPT

(DIOPT score >2) (Hu et al., 2011). Next, we performed Fisher exact test of the predicted target phospho-

peptides of each kinase for the increased and decreased IRpPS. If the predicted target phosphopeptides of

a kinase were enriched in the increased or decreased IRpPs (q value <0.05), then we selected the KSRs be-

tween the kinase and its predicted substrates contained in the increased or decreased IRpPs, respectively.

The q values were calculated by the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).

Prediction of upstream signaling pathways regulating the predicted TFs

We predicted upstream insulin signaling pathways regulating the predicted TFs using the IRpPs, the PPI

network following insulin stimulation extracted from our previous study (Vinayagam et al., 2016), the ki-

nases-IRpPs relationships predicted by NetPhorest (Horn et al., 2014; Miller et al., 2008) and Fisher’s exact

test, and theMIST PPI network (Hu et al., 2018). We performed the prediction in the following three steps as

shown in Figure 3D. In Step III-I, we constructed a network by merging the IRpPs (Figure 3A), the PPI

network following insulin stimulation (Figure 3C), and the predicted KSRs (Figure 3B), and the predicted

TFs (Figure 2B). Hereafter, we denoted the obtained network as the ’’PPI and phosphorylation network’’.

We also merged the MIST PPI network and the PPI and phosphorylation network. To obtain the sub-

network involved in signal transduction, we extracted the subnetworks that consisted only of the proteins

in signaling pathways in the KEGG database, the predicted kinases, or the predicted TFs from the obtained

network. The signaling pathways in the KEGG database were defined as pathways including the character

string of ‘‘signaling pathway’’ in their names. We denoted this subnetwork as the ‘‘merged network’’. In
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Step III-II, we extracted the shortest paths from the nodes in the PPI and phosphorylation network to each

of the TFs from the merged network. Then we merged the PPI and phosphorylation network and the

network consists of the extracted shortest paths. In Step III-III, to predict the signaling pathways acti-

vated/inhibited in an insulin-dependent manner, we extracted the paths from the insulin receptor to

each of the TFs in the network obtained in Step III-II. We defined the paths from the insulin receptor to

a TF as the insulin signaling pathway regulating the TF. In this study, the maximum shortest path length

from the insulin receptor to each TF is 5. We extracted the paths whose lengths were 5 or less to reduce

the false positives while maximizing the number of the TFs with predicted upstream signaling pathways.

KEGG signaling pathway enrichment analysis for the upstream signaling pathways of each TF

The significance of the overlap between proteins in the signaling pathways of the KEGG database and the

upstream signaling pathways of each TF was determined by one-tailed Fisher exact test, and signaling

pathways with q values less than 0.05 were defined as significantly enriched. The q values were calculated

by the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). We used the genes in any of the

signaling pathways in the KEGG database as a background.

Step IV: identification of IRMs

Metabolites that were detected in less than 60% of replicates (3 replicates) at any time point following in-

sulin stimulation (0, 60, 120, and 180 min) were removed from the analysis. To correct the bias among sam-

ples, the area under the peak obtained by the LC-MS measurement of each metabolite was normalized by

the median of the area under the peak of all metabolites for each sample. The significance of the change at

each time point compared to time 0 was tested by two-tailed Welch’s t-test for each metabolite. Metabo-

lites that showed an absolute log2 fold change larger than 0.5 and an FDR-adjusted p value (q value) less

than 0.1 at any time point were defined as IRMs. The q values were calculated by Storey’s procedure (Storey

and Tibshirani, 2003).

Step V: connection of the IRMs/IRGs and metabolic reactions

Identification of allosteric regulation

We identified IRMs that function as allosteric regulators for metabolic enzymes using the BRENDA data-

base, which is a database with information regarding allosteric effectors and their target enzymes (Chang

et al., 2021). A metabolite can operate as an activator for some enzymes and as an inhibitor for others. We

obtained the entries for metabolic enzymes from the KEGG database and extracted their allosteric effector

(activator and inhibitor) information, as reported for at least one organism in BRENDA. Then, we associated

the standard compound names of allosteric effectors used in BRENDA with metabolite names that were

used in KEGG to obtain the KEGG compound ID related to each allosteric effector.

Identification of substrates, products, and metabolic enzyme genes involved in metabolic
reactions

We extracted the substrates, products, andmetabolic enzymes related to eachmetabolic reaction from the

KEGG database. Because the reversibility of metabolic reactions was not available in a comprehensive

manner, metabolic reactions were presumed to be regulated by both the substrate and product.

Step VII: integration of the trans-omic network of insulin action with a CRISPR screen for cell

proliferation

Identification of screen hits of the CRISPR knockout screen for cell proliferation

We identified screen hits that significantly affect cell proliferation from the CRISPR screen for cell prolifer-

ation measured in Drosophila S2R + cells as described in our previous study (Viswanatha et al., 2018).

Identification of differences in the distributions of Spearman correlation coefficients between
groups of IRG pairs

Differences in the distribution of Spearman correlation coefficients between groups of IRG pairs were

tested using the Wilcoxon rank-sum test. We defined distributions between groups with Bonferroni-cor-

rected p values less than 0.05 as significantly different. *p < 0.05, **p < 0.01, ***p < 0.001.
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Prediction of subnetworks required for cell growth in an insulin-dependent manner

We aimed to identify subnetworks that are required for cell growth in an insulin-dependent manner by us-

ing the trans-omic network of insulin action and the CRISPR screen data for cell proliferation (Viswanatha

et al., 2018). We hypothesized that both the upstream signalingmolecules and the target IRGs of a TF which

is required for cell growth in an insulin-dependent manner are likely to negatively/positively affect cell

growth. We predicted such TFs by GSEA (Subramanian et al., 2005) using the Z-scores of the CRISPR

screening and the information of the upstream signaling molecules and the target IRGs of each TF in

the trans-omic network. We first extracted TF-centric subnetworks each containing a TF, its upstream

signaling molecules (Figure 3E), and its target IRGs (Figure 2B). Next, we performed GSEA using the

Z-score of the CRISPR screening for both the upstream signaling molecules and the target IRGs of the

TF in each TF-centric subnetwork. When the results of GSEA were significant for both the upstream

signaling molecules and the target IRGs for a TF (FDR <0.05), and the TF itself is a screen hit, we considered

the subnetwork potentially involved in cell growth. It has been proposed that the activity of a regulatory

protein (e.g. a TF and a kinase) can be estimated based on the statistics (e.g. abundance and fold change)

of their target molecules (e.g. target genes regulated by a TF and phosphopeptides regulated by a kinase)

(Alvarez et al., 2016; Dugourd and Saez-Rodriguez, 2019), which is the foundation for the method used in

this study to estimate the importance of each TF to cell growth by using the Z-scores of the CRISPR

screening of the upstream molecules and downstream target genes of the TFs.

Implementation

Statistical analyses and trans-omic network analysis were performed using Python 3.8.3 (https://www.

python.org) or R 3.6.3 (R Core Team, 2021). Network diagrams were visualized using Cytoscape 3.8.2 (Shan-

non et al., 2003).
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